Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Opioid receptor–triggered spinal mTORC1 activation contributes to morphine tolerance and hyperalgesia
Ji-Tian Xu, … , Myron Yaster, Yuan-Xiang Tao
Ji-Tian Xu, … , Myron Yaster, Yuan-Xiang Tao
Published January 2, 2014
Citation Information: J Clin Invest. 2014;124(2):592-603. https://doi.org/10.1172/JCI70236.
View: Text | PDF
Research Article Neuroscience Article has an altmetric score of 15

Opioid receptor–triggered spinal mTORC1 activation contributes to morphine tolerance and hyperalgesia

  • Text
  • PDF
Abstract

The development of opioid-induced analgesic tolerance and hyperalgesia is a clinical challenge for managing chronic pain. Adaptive changes in protein translation in the nervous system are thought to promote opioid tolerance and hyperalgesia; however, how opioids drive such changes remains elusive. Here, we report that mammalian target of rapamycin (mTOR), which governs most protein translation, was activated in rat spinal dorsal horn neurons after repeated intrathecal morphine injections. Activation was triggered through μ opioid receptor and mediated by intracellular PI3K/Akt. Spinal mTOR inhibition blocked both induction and maintenance of morphine tolerance and hyperalgesia, without affecting basal pain perception or locomotor functions. These effects were attributed to the attenuation of morphine-induced increases in translation initiation activity, nascent protein synthesis, and expression of some known key tolerance-associated proteins, including neuronal NOS (nNOS), in dorsal horn. Moreover, elevating spinal mTOR activity by knocking down the mTOR-negative regulator TSC2 reduced morphine analgesia, produced pain hypersensitivity, and increased spinal nNOS expression. Our findings implicate the μ opioid receptor–triggered PI3K/Akt/mTOR pathway in promoting morphine-induced spinal protein translation changes and associated morphine tolerance and hyperalgesia. These data suggest that mTOR inhibitors could be explored for prevention and/or reduction of opioid tolerance in chronic pain management.

Authors

Ji-Tian Xu, Jian-Yuan Zhao, Xiuli Zhao, Davinna Ligons, Vinod Tiwari, Fidelis E. Atianjoh, Chun-Yi Lee, Lingli Liang, Weidong Zang, Dolores Njoku, Srinivasa N. Raja, Myron Yaster, Yuan-Xiang Tao

×

Figure 1

Intrathecal rapamycin attenuates the development and maintenance of morphine tolerance and hyperalgesia. n = 5–7 rats per group.

Options: View larger image (or click on image) Download as PowerPoint
Intrathecal rapamycin attenuates the development and maintenance of morp...
(A–C) Morphine (M) was administered intrathecally twice daily for 6 days. (A) Rapamycin (R), but not ascomycin (A), attenuated the reduction in morphine’s maximal potential analgesic effect (MPAE) on days 5 and 7. S, saline; V, vehicle. (B) Rapamycin, but not ascomycin, blocked a rightward shift in the cumulative dose-response curve of morphine on day 7. (C) Rapamycin dose-dependently attenuated the reduction in morphine’s MPAE on days 5 and 7. (D) Coinjection of rapamycin did not affect analgesia induced by a submaximal dose of intrathecal morphine. (E and F) Morphine was administered intrathecally twice daily for 6 days. Coadministration of rapamycin, but not ascomycin, blocked morphine-induced decreases in left hind paw withdrawal threshold (E) and latency (F) on day 7. (G–I) Morphine was administered intrathecally twice daily for 11 days. (G) Coadministration of rapamycin beginning on day 7 reversed morphine-induced reductions in MPAE on days 9 and 12. n = 5–6 rats per group. (H and I) Coadministration of rapamycin beginning on day 7 reversed the reductions in left hind paw withdrawal threshold (H) and latency (I) on day 12. (J) Concanavalin A–stimulated (ConA) proliferation of splenocytes and effect of rapamycin pretreatment. *P < 0.05, **P < 0.01 vs. baseline; #P < 0.05, ##P < 0.01 vs. morphine plus vehicle.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 2 news outlets
Posted by 5 X users
95 readers on Mendeley
See more details