Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Aging and epigenetic drift: a vicious cycle
Jean-Pierre Issa
Jean-Pierre Issa
Published January 2, 2014
Citation Information: J Clin Invest. 2014;124(1):24-29. https://doi.org/10.1172/JCI69735.
View: Text | PDF
Review Series Article has an altmetric score of 23

Aging and epigenetic drift: a vicious cycle

  • Text
  • PDF
Abstract

The term epigenetics refers to stable patterns of gene expression that are seen during differentiation or X chromosome inactivation and are not dependent on dynamic changes in coding DNA. These gene expression states are encoded in the epigenome — a collection of marks on DNA or on histone tails that are established during embryogenesis. Genome-wide studies in aging cells and tissues have uncovered stochastic DNA methylation drift (gradual increases or decreases at specific loci) that reflects imperfect maintenance of epigenetic marks. Drift creates epigenetic mosaicism in aging stem cells that could potentially restrict their plasticity and worsen phenotypes such as stem cell exhaustion and focal proliferative defects that can lead to cancer.

Authors

Jean-Pierre Issa

×

Figure 1

Dynamics of DNA methylation in genomic compartments.

Options: View larger image (or click on image) Download as PowerPoint
Dynamics of DNA methylation in genomic compartments.
(A) The top line re...
(A) The top line represents DNA containing two genes (arrows indicate transcription start sites; exons are shown in black); three CpG islands (CGI; green) located in a promoter, a 3′ end, and an intergenic area; two enhancers (red); a series of repeats (thin black lines); a non-CGI promoter (purple); and intergenic and intronic DNA (open boxes). The normal methylation state and aging changes are summarized in the light blue box. (B) Effector enzymes that switch DNA methylation on or off. DNMTs include DNMT1, DNMT3a, and DNMT3b; TETs include TET1, TET2, and TET3.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Blogged by 3
Posted by 2 X users
Referenced in 2 patents
On 1 Facebook pages
Mentioned in 1 Google+ posts
312 readers on Mendeley
1 readers on CiteULike
See more details