Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Histone deacetylase 6–mediated selective autophagy regulates COPD-associated cilia dysfunction
Hilaire C. Lam, … , Stefan W. Ryter, Augustine M.K. Choi
Hilaire C. Lam, … , Stefan W. Ryter, Augustine M.K. Choi
Published November 8, 2013
Citation Information: J Clin Invest. 2013;123(12):5212-5230. https://doi.org/10.1172/JCI69636.
View: Text | PDF | Corrigendum
Research Article Pulmonology Article has an altmetric score of 13

Histone deacetylase 6–mediated selective autophagy regulates COPD-associated cilia dysfunction

  • Text
  • PDF
Abstract

Chronic obstructive pulmonary disease (COPD) involves aberrant airway inflammatory responses to cigarette smoke (CS) that are associated with epithelial cell dysfunction, cilia shortening, and mucociliary clearance disruption. Exposure to CS reduced cilia length and induced autophagy in vivo and in differentiated mouse tracheal epithelial cells (MTECs). Autophagy-impaired (Becn1+/– or Map1lc3B–/–) mice and MTECs resisted CS-induced cilia shortening. Furthermore, CS increased the autophagic turnover of ciliary proteins, indicating that autophagy may regulate cilia homeostasis. We identified cytosolic deacetylase HDAC6 as a critical regulator of autophagy-mediated cilia shortening during CS exposure. Mice bearing an X chromosome deletion of Hdac6 (Hdac6–/Y) and MTECs from these mice had reduced autophagy and were protected from CS-induced cilia shortening. Autophagy-impaired Becn1–/–, Map1lc3B–/–, and Hdac6–/Y mice or mice injected with an HDAC6 inhibitor were protected from CS-induced mucociliary clearance (MCC) disruption. MCC was preserved in mice given the chemical chaperone 4-phenylbutyric acid, but was disrupted in mice lacking the transcription factor NRF2, suggesting that oxidative stress and altered proteostasis contribute to the disruption of MCC. Analysis of human COPD specimens revealed epigenetic deregulation of HDAC6 by hypomethylation and increased protein expression in the airways. We conclude that an autophagy-dependent pathway regulates cilia length during CS exposure and has potential as a therapeutic target for COPD.

Authors

Hilaire C. Lam, Suzanne M. Cloonan, Abhiram R. Bhashyam, Jeffery A. Haspel, Anju Singh, J. Fah Sathirapongsasuti, Morgan Cervo, Hongwei Yao, Anna L. Chung, Kenji Mizumura, Chang Hyeok An, Bin Shan, Jonathan M. Franks, Kathleen J. Haley, Caroline A. Owen, Yohannes Tesfaigzi, George R. Washko, John Quackenbush, Edwin K. Silverman, Irfan Rahman, Hong Pyo Kim, Ashfaq Mahmood, Shyam S. Biswal, Stefan W. Ryter, Augustine M.K. Choi

×

Total citations by year

Year: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2012 Total
Citations: 1 5 14 19 12 24 25 19 7 27 19 6 1 179
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article in year 2012 (1)

Title and authors Publication Year
Autophagy: A Lysosome-Dependent Process with Implications in Cellular Redox Homeostasis and Human Disease
SW Ryter, D Bhatia, ME Choi
Antioxidants & Redox Signaling 2012

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Referenced in 5 patents
205 readers on Mendeley
See more details