Dysfunctional telomeres limit cellular proliferative capacity by activating the p53-p21– and p16INK4a-Rb–dependent DNA damage responses (DDRs). The p16INK4a tumor suppressor accumulates in aging tissues, is a biomarker for cellular senescence, and limits stem cell function in vivo. While the activation of a p53-dependent DDR by dysfunctional telomeres has been well documented in human cells and mouse models, the role for p16INK4a in response to telomere dysfunction remains unclear. Here, we generated protection of telomeres 1b
Yang Wang, Norman Sharpless, Sandy Chang
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 327 | 71 |
70 | 23 | |
Figure | 256 | 16 |
Table | 35 | 0 |
Supplemental data | 40 | 6 |
Citation downloads | 45 | 0 |
Totals | 773 | 116 |
Total Views | 889 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.