Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria
Kaori Hayashi, … , Yusuke Sakamaki, Hiroshi Itoh
Kaori Hayashi, … , Yusuke Sakamaki, Hiroshi Itoh
Published May 8, 2014
Citation Information: J Clin Invest. 2014;124(6):2523-2537. https://doi.org/10.1172/JCI69557.
View: Text | PDF
Research Article Nephrology Article has an altmetric score of 22

KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria

  • Text
  • PDF
Abstract

The transcription factor Kruppel-like factor 4 (KLF4) has the ability, along with other factors, to reprogram somatic cells into induced pluripotent stem (iPS) cells. Here, we determined that KLF4 is expressed in kidney glomerular podocytes and is decreased in both animal models and humans exhibiting a proteinuric. Transient restoration of KLF4 expression in podocytes of diseased glomeruli in vivo, either by gene transfer or transgenic expression, resulted in a sustained increase in nephrin expression and a decrease in albuminuria. In mice harboring podocyte-specific deletion of Klf4, adriamycin-induced proteinuria was substantially exacerbated, although these animals displayed minimal phenotypical changes prior to adriamycin administration. KLF4 overexpression in cultured human podocytes increased expression of nephrin and other epithelial markers and reduced mesenchymal gene expression. DNA methylation profiling and bisulfite genomic sequencing revealed that KLF4 expression reduced methylation at the nephrin promoter and the promoters of other epithelial markers; however, methylation was increased at the promoters of genes encoding mesenchymal markers, suggesting selective epigenetic regulation of podocyte gene expression. Together, these results suggest that KLF4 epigenetically modulates podocyte phenotype and function and that the podocyte epigenome can be targeted for direct intervention and reduction of proteinuria.

Authors

Kaori Hayashi, Hiroyuki Sasamura, Mari Nakamura, Tatsuhiko Azegami, Hideyo Oguchi, Yusuke Sakamaki, Hiroshi Itoh

×

Figure 4

Knockdown of KLF4 in podocytes exacerbates proteinuria in ADM nephropathy.

Options: View larger image (or click on image) Download as PowerPoint
Knockdown of KLF4 in podocytes exacerbates proteinuria in ADM nephropath...
(A) Experimental protocol. Podocyte-specific Klf4 KO mice (podocin-Cre Klf4flox/flox) and control littermates (Klf4flox/flox) were treated with or without ADM (n = 5–6 per time point). (B) Real-time RT-PCR and Western blotting analysis of nephrin, KLF4, and KLF15 expression in kidney cortex of KOs and controls. (C) Representative photomicrographs of immunofluorescence staining of KLF4 and nephrin in KOs or controls with or without ADM treatment at 2 weeks after ADM injection. Scale bar: 25 μm. (D) Time course of changes in albuminuria in Klf4 KOs and controls without (–) or with (+) ADM treatment. (E) Real-time RT-PCR analysis of Klf15 expression in kidney cortex of KOs and controls. ADM (+): 2 weeks after ADM injection. *P < 0.05, **P < 0.01 vs. controls; #P < 0.05, ##P < 0.01 vs. the respective groups.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 2 news outlets
Blogged by 1
Posted by 1 X users
82 readers on Mendeley
1 readers on CiteULike
See more details