Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Positive feedback between NF-κB and TNF-α promotes leukemia-initiating cell capacity
Yuki Kagoya, … , Yoichiro Iwakura, Mineo Kurokawa
Yuki Kagoya, … , Yoichiro Iwakura, Mineo Kurokawa
Published January 2, 2014
Citation Information: J Clin Invest. 2014;124(2):528-542. https://doi.org/10.1172/JCI68101.
View: Text | PDF
Research Article Oncology Article has an altmetric score of 11

Positive feedback between NF-κB and TNF-α promotes leukemia-initiating cell capacity

  • Text
  • PDF
Abstract

Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy that originates from leukemia-initiating cells (LICs). The identification of common mechanisms underlying LIC development will be important in establishing broadly effective therapeutics for AML. Constitutive NF-κB pathway activation has been reported in different types of AML; however, the mechanism of NF-κB activation and its importance in leukemia progression are poorly understood. Here, we analyzed myeloid leukemia mouse models to assess NF-κB activity in AML LICs. We found that LICs, but not normal hematopoietic stem cells or non-LIC fractions within leukemia cells, exhibited constitutive NF-κB activity. This activity was maintained through autocrine TNF-α secretion, which formed an NF-κB/TNF-α positive feedback loop. LICs had increased levels of active proteasome machinery, which promoted the degradation of IκBα and further supported NF-κB activity. Pharmacological inhibition of the proteasome complex markedly suppressed leukemia progression in vivo. Conversely, enhanced activation of NF-κB signaling expanded LIC frequency within leukemia cell populations. We also demonstrated a strong correlation between NF-κB activity and TNF-α secretion in human AML samples. Our findings indicate that NF-κB/TNF-α signaling in LICs contributes to leukemia progression and provide a widely applicable approach for targeting LICs.

Authors

Yuki Kagoya, Akihide Yoshimi, Keisuke Kataoka, Masahiro Nakagawa, Keiki Kumano, Shunya Arai, Hiroshi Kobayashi, Taku Saito, Yoichiro Iwakura, Mineo Kurokawa

×

Figure 1

NF-κB pathway is activated in LICs of different murine myeloid leukemia models.

Options: View larger image (or click on image) Download as PowerPoint
NF-κB pathway is activated in LICs of different murine myeloid leukemia ...
(A) LIC frequency in the two fractions of each leukemia model as determined by limiting dilution assay. See Supplemental Table 1 for detailed transplantation results. (B) Immunofluorescence assessment for p65 nuclear translocation in KSLs, GMPs, LICs, and non-LICs in three leukemia models. Scale bars: 10 μm. (C) Quantification of p65 nuclear translocation assessed by the mean nucleus/cytoplasm intensity ratio. More than 50 cells were scored in each specimen, and the average intensity ratio with SD is shown.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Posted by 1 X users
172 readers on Mendeley
1 readers on CiteULike
See more details