Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cancer therapy combination: green tea and a phosphodiesterase 5 inhibitor?
Chung S. Yang, Hong Wang
Chung S. Yang, Hong Wang
Published January 25, 2013
Citation Information: J Clin Invest. 2013;123(2):556-558. https://doi.org/10.1172/JCI67589.
View: Text | PDF
Commentary

Cancer therapy combination: green tea and a phosphodiesterase 5 inhibitor?

  • Text
  • PDF
Abstract

The major constituent of green tea, (–)-epigallocatechin-3-O-gallate (EGCG), has been shown to have cancer-preventive and therapeutic activities. Numerous molecular targets for EGCG have been proposed, but the mechanisms of its anticancer activities are not clearly understood. In this issue of the JCI, Kumazoe et al. report that EGCG activates 67-kDa laminin receptor (67LR), elevates cGMP levels, and induces cancer cell apoptosis. Furthermore, a phosphodiesterase 5 inhibitor, vardenafil, synergizes with EGCG to induce cancer cell death. This is a provocative observation with important implications for cancer therapy. It also raises several issues for further investigation, such as the mechanism by which EGCG specifically activates 67LR.

Authors

Chung S. Yang, Hong Wang

×

Figure 1

Proposed mechanisms of anticancer action of EGCG.

Options: View larger image (or click on image) Download as PowerPoint
Proposed mechanisms of anticancer action of EGCG.
The mechanism by which...
The mechanism by which EGCG exerts its antitumor actions is unknown, but may involve one or more of the actions illustrated. EGCG can act as an antioxidant, reducing ROS and inhibiting cancer development, and paradoxically may promote the production of ROS in cancer cells and induce apoptosis. EGCG is also known to bind and modulate the activities of enzymes, receptors, and signaling molecules that affect cell growth and proliferation. Activation of 67LR by EGCG and inhibition of PDE5 activity by its inhibitors synergistically induce cancer cell apoptosis (8). DNMT1, DNA, methyltransferase 1; DHFr, dihydrofolate reductase; HGFR, HGF receptor; Bcl-2, B cell CLL/lymphoma 2; GRP78, glucose-regulated protein 78 kDa; Pin1, peptidyl cis/trans isomerase.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts