Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Antigen-activated dendritic cells ameliorate influenza A infections
Kobporn Boonnak, … , Eyal Talor, Kanta Subbarao
Kobporn Boonnak, … , Eyal Talor, Kanta Subbarao
Published June 24, 2013
Citation Information: J Clin Invest. 2013;123(7):2850-2861. https://doi.org/10.1172/JCI67550.
View: Text | PDF | Corrigendum
Research Article Infectious disease Article has an altmetric score of 27

Antigen-activated dendritic cells ameliorate influenza A infections

  • Text
  • PDF
Abstract

Influenza A viruses cause significant morbidity and mortality worldwide. There is a need for alternative or adjunct therapies, as resistance to currently used antiviral drugs is emerging rapidly. We tested ligand epitope antigen presentation system (LEAPS) technology as a new immune-based treatment for influenza virus infection in a mouse model. Influenza-J-LEAPS peptides were synthesized by conjugating the binding ligand derived from the β2-microglobulin chain of the human MHC class I molecule (J-LEAPS) with 15 to 30 amino acid–long peptides derived from influenza virus NP, M, or HA proteins. DCs were stimulated with influenza-J-LEAPS peptides (influenza-J-LEAPS) and injected intravenously into infected mice. Antigen-specific LEAPS-stimulated DCs were effective in reducing influenza virus replication in the lungs and enhancing survival of infected animals. Additionally, they augmented influenza-specific T cell responses in the lungs and reduced the severity of disease by limiting excessive cytokine responses, which are known to contribute to morbidity and mortality following influenza virus infection. Our data demonstrate that influenza-J-LEAPS–pulsed DCs reduce virus replication in the lungs, enhance survival, and modulate the protective immune responses that eliminate the virus while preventing excessive cytokines that could injure the host. This approach shows promise as an adjunct to antiviral treatment of influenza virus infections.

Authors

Kobporn Boonnak, Leatrice Vogel, Marlene Orandle, Daniel Zimmerman, Eyal Talor, Kanta Subbarao

×

Figure 2

LEAPS-loaded DCs target the site of infection.

Options: View larger image (or click on image) Download as PowerPoint
LEAPS-loaded DCs target the site of infection.
107 CFSE-labeled nonpulse...
107 CFSE-labeled nonpulsed DCs, JH-LEAPS–pulsed DCs (irrelevant LEAPS control), or combined-LEAPS–pulsed DCs were injected i.v. into naive mice (A) or influenza virus–infected mice (10 LD50, PR8 virus, i.n.) (B). The accumulation of CFSE-positive cells was measured in the lungs of mice 8, 24, and 48 hours after administration of the LEAPS-stimulated DCs. The data are representative FACS plots from each group (n = 5 mice/group).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 2 news outlets
Blogged by 2
Posted by 2 X users
33 readers on Mendeley
See more details