Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Thrombospondin-1 mediates oncogenic Ras–induced senescence in premalignant lung tumors
Kwan-Hyuck Baek, … , Gerard I. Evan, Sandra Ryeom
Kwan-Hyuck Baek, … , Gerard I. Evan, Sandra Ryeom
Published September 9, 2013
Citation Information: J Clin Invest. 2013;123(10):4375-4389. https://doi.org/10.1172/JCI67465.
View: Text | PDF
Research Article Oncology Article has an altmetric score of 8

Thrombospondin-1 mediates oncogenic Ras–induced senescence in premalignant lung tumors

  • Text
  • PDF
Abstract

Progression of premalignant lesions is restrained by oncogene-induced senescence. Oncogenic Ras triggers senescence in many organs, including the lung, which exhibits high levels of the angiogenesis inhibitor thrombospondin-1 (TSP-1). The contribution of TSP-1 upregulation to the modulation of tumorigenesis in the lung is unclear. Using a mouse model of lung cancer, we have shown that TSP-1 plays a critical and cell-autonomous role in suppressing Kras-induced lung tumorigenesis independent of its antiangiogenic function. Overall survival was decreased in a Kras-driven mouse model of lung cancer on a Tsp-1–/– background. We found that oncogenic Kras–induced TSP-1 upregulation in a p53-dependent manner. TSP-1 functioned in a positive feedback loop to stabilize p53 by interacting directly with activated ERK. TSP-1 tethering of ERK in the cytoplasm promoted a level of MAPK signaling that was sufficient to sustain p53 expression and a senescence response. Our data identify TSP-1 as a p53 target that contributes to maintaining Ras-induced senescence in the lung.

Authors

Kwan-Hyuck Baek, Dongha Bhang, Alexander Zaslavsky, Liang-Chuan Wang, Anil Vachani, Carla F. Kim, Steven M. Albelda, Gerard I. Evan, Sandra Ryeom

×

Figure 4

Oncogenic Kras activation triggers TSP-1 upregulation in a p53-dependent manner.

Options: View larger image (or click on image) Download as PowerPoint
Oncogenic Kras activation triggers TSP-1 upregulation in a p53-dependent...
(A) TSP-1 protein expression in lungs harvested from p53+/+, p53+/–, and p53–/– mice. Isolated lung tissue was probed for TSP-1 expression by immunoblotting. Tsp-1–/– lung tissue served as negative control. TSP-1 expression relative to β-actin (loading control) was quantified by densitometry. (B) TSP-1 expression in the absence of p53 after KrasG12D activation in primary lung fibroblasts. KrasG12D×Tsp-1+/+, KrasG12D×p53fl/fl, and KrasG12D×Tsp-1–/– lung fibroblasts were isolated, infected with Ad-Cre to activate oncogenic Kras and delete p53, harvested at the indicated time points, and probed for TSP-1 expression by immunoblotting. (C) Western blot of p53 and p21cip1 expression in KrasG12D×Tsp-1+/+ and KrasG12D×Tsp-1–/– primary lung fibroblasts isolated at the indicated times after KrasG12D activation. β-actin served as loading control. (D) Immunohistochemistry for p21cip1 in KrasG12D×Tsp-1+/+ and KrasG12D×Tsp-1–/– lung sections isolated 21 weeks after KrasG12D activation. Arrows indicate p21cip1-positive cells. (E) pp53Ser15 after oncogenic Hras activation. Tsp-1+/+ and Tsp-1–/– lung fibroblasts were infected with HrasV12 retrovirus, harvested at the indicated days, and probed for pp53Ser15, p53, p21cip1, and β-actin by immunoblotting. Uninfected lung fibroblasts served as negative controls. pp53Ser15 expression relative to total p53 was quantified by densitometry. (F) Nutlin-3 treatment restored HrasV12-induced senescence in Tsp-1–/– lung fibroblasts. Lung fibroblasts were infected with HrasV12 or mock retrovirus, treated with 5 μM nutlin-3 or DMSO for 9 days, then stained for SA–β-gal to detect senescent cells. Scale bars: 50 μm (D); 200 μm (F).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
52 readers on Mendeley
See more details