Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
2-photon imaging of phagocyte-mediated T cell activation in the CNS
Marija Pesic, … , Hartmut Wekerle, Naoto Kawakami
Marija Pesic, … , Hartmut Wekerle, Naoto Kawakami
Published February 1, 2013
Citation Information: J Clin Invest. 2013;123(3):1192-1201. https://doi.org/10.1172/JCI67233.
View: Text | PDF
Technical Advance Immunology Article has an altmetric score of 16

2-photon imaging of phagocyte-mediated T cell activation in the CNS

  • Text
  • PDF
Abstract

Autoreactive T cells can infiltrate the CNS to cause disorders such as multiple sclerosis. In order to visualize T cell activation in the CNS, we introduced a truncated fluorescent derivative of nuclear factor of activated T cells (NFAT) as a real-time T cell activation indicator. In experimental autoimmune encephalomyelitis, a rat model of multiple sclerosis, we tracked T cells interacting with structures of the vascular blood-brain barrier (BBB). 2-photon imaging documented the cytoplasmic-nuclear translocation of fluorescent NFAT, indicative of calcium-dependent activation of the T cells in the perivascular space, but not within the vascular lumen. The activation was related to contacts with the local antigen-presenting phagocytes and was noted only in T cells with a high pathogenic potential. T cell activation implied the presentation of an autoantigen, as the weakly pathogenic T cells, which remained silent in the untreated hosts, were activated upon instillation of exogenous autoantigen. Activation did not cogently signal long-lasting arrest, as individual T cells were able to sequentially contact fresh APCs. We propose that the presentation of local autoantigen by BBB-associated APCs provides stimuli that guide autoimmune T cells to the CNS destination, enabling them to attack the target tissue.

Authors

Marija Pesic, Ingo Bartholomäus, Nikolaos I. Kyratsous, Vigo Heissmeyer, Hartmut Wekerle, Naoto Kawakami

×

Figure 6

TMOG-NFAT-GFP cell activation by an exogenous antigen.

Options: View larger image (or click on image) Download as PowerPoint
TMOG-NFAT-GFP cell activation by an exogenous antigen.
 
(A) Representat...
(A) Representative still images of SNARF-labeled (red) TMOG-NFAT-GFP cells (green) interacting with local APCs (cyan) before and after local application of MOG into the imaging window. White and red arrowheads denote cytoplasmic and nuclear location, respectively. Scale bars: 10 μm. (B) Trajectory lines from representative videos before and after injection of soluble MOG (see Figure 4D). (C–E) ΔNFAT-GFP distribution pattern (C), velocity (D), and T cell/APC contact duration (E) in TMOG-NFAT-GFP cells analyzed before and after MOG application. Results from 3 independent experiments and at least 4 different videos per condition are shown. (F) Expression of the activation marker OX-40 on CNS-infiltrating TMOG-NFAT-GFP cells upon intrathecal application of OVA or MOG antigen, 3 days after their i.v. transfer. Expression was evaluated by flow cytometry on ex vivo isolated T cells. Representative results from 3 independent experiments are shown. ***P < 0.001, 1-way ANOVA followed by Kruskal-Wallis/Dunn multiple-comparison test.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Blogged by 1
Posted by 1 X users
On 2 Facebook pages
Highlighted by 1 platforms
90 readers on Mendeley
See more details