Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Iron regulation by hepcidin
Ningning Zhao, … , An-Sheng Zhang, Caroline A. Enns
Ningning Zhao, … , An-Sheng Zhang, Caroline A. Enns
Published June 3, 2013
Citation Information: J Clin Invest. 2013;123(6):2337-2343. https://doi.org/10.1172/JCI67225.
View: Text | PDF
Science in Medicine Article has an altmetric score of 7

Iron regulation by hepcidin

  • Text
  • PDF
Abstract

Hepcidin is a key hormone that is involved in the control of iron homeostasis in the body. Physiologically, hepcidin is controlled by iron stores, inflammation, hypoxia, and erythropoiesis. The regulation of hepcidin expression by iron is a complex process that requires the coordination of multiple proteins, including hemojuvelin, bone morphogenetic protein 6 (BMP6), hereditary hemochromatosis protein, transferrin receptor 2, matriptase-2, neogenin, BMP receptors, and transferrin. Misregulation of hepcidin is found in many disease states, such as the anemia of chronic disease, iron refractory iron deficiency anemia, cancer, hereditary hemochromatosis, and ineffective erythropoiesis, such as β-thalassemia. Thus, the regulation of hepcidin is the subject of interest for the amelioration of the detrimental effects of either iron deficiency or overload.

Authors

Ningning Zhao, An-Sheng Zhang, Caroline A. Enns

×

Figure 1

Models for control of hepcidin expression by iron.

Options: View larger image (or click on image) Download as PowerPoint
Models for control of hepcidin expression by iron.
Efficient hepcidin ex...
Efficient hepcidin expression in hepatocytes requires an intact BMP signaling pathway, HJV, neogenin, TfR2, HFE, and BMP6. (A) Under high iron conditions, increased loading of Tf with iron stabilizes TfR2, disrupts the HFE-TfR1 interaction, and induces BMP6 secretion from the nonparenchymal cells of the liver, which facilitates the formation of a complex consisting of the BMP receptor/BMP6/HJV/neogenin/TfR2/HFE to induce hepcidin expression. (B) Low iron conditions increase MT2, which induces the cleavage of hepatic HJV. Decreased Tf saturation in the circulation destabilizes TfR2 protein and facilitates the HFE-TfR1 interaction. Low iron levels in the liver reduce BMP6 secretion from the nonparenchymal cells, consequently blunting BMP signaling and lowering hepcidin expression. (C) Inflammation induces the expression of IL-6 and activin B in the liver, which activates the transcription of hepcidin via the STAT3/JAK2 pathway and the BMP signaling pathway, respectively.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 1 X users
Referenced in 15 patents
Referenced in 3 Wikipedia pages
213 readers on Mendeley
See more details