Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Angiotensin-converting enzyme overexpression in myelomonocytes prevents Alzheimer’s-like cognitive decline
Kenneth E. Bernstein, … , Sebastien Fuchs, Maya Koronyo-Hamaoui
Kenneth E. Bernstein, … , Sebastien Fuchs, Maya Koronyo-Hamaoui
Published February 3, 2014
Citation Information: J Clin Invest. 2014;124(3):1000-1012. https://doi.org/10.1172/JCI66541.
View: Text | PDF
Research Article Neuroscience Article has an altmetric score of 59

Angiotensin-converting enzyme overexpression in myelomonocytes prevents Alzheimer’s-like cognitive decline

  • Text
  • PDF
Abstract

Cognitive decline in patients with Alzheimer’s disease (AD) is associated with elevated brain levels of amyloid β protein (Aβ), particularly neurotoxic Aβ1–42. Angiotensin-converting enzyme (ACE) can degrade Aβ1–42, and ACE overexpression in myelomonocytic cells enhances their immune function. To examine the effect of targeted ACE overexpression on AD, we crossed ACE10/10 mice, which overexpress ACE in myelomonocytes using the c-fms promoter, with the transgenic APPSWE/PS1ΔE9 mouse model of AD (AD+). Evaluation of brain tissue from these AD+ACE10/10 mice at 7 and 13 months revealed that levels of both soluble and insoluble brain Aβ1–42 were reduced compared with those in AD+ mice. Furthermore, both plaque burden and astrogliosis were drastically reduced. Administration of the ACE inhibitor ramipril increased Aβ levels in AD+ACE10/10 mice compared with the levels induced by the ACE-independent vasodilator hydralazine. Overall, AD+ACE10/10 mice had less brain-infiltrating cells, consistent with reduced AD-associated pathology, though ACE-overexpressing macrophages were abundant around and engulfing Aβ plaques. At 11 and 12 months of age, the AD+ACE10/WT and AD+ACE10/10 mice were virtually equivalent to non-AD mice in cognitive ability, as assessed by maze-based behavioral tests. Our data demonstrate that an enhanced immune response, coupled with increased myelomonocytic expression of catalytically active ACE, prevents cognitive decline in a murine model of AD.

Authors

Kenneth E. Bernstein, Yosef Koronyo, Brenda C. Salumbides, Julia Sheyn, Lindsey Pelissier, Dahabada H.J. Lopes, Kandarp H. Shah, Ellen A. Bernstein, Dieu-Trang Fuchs, Jeff J.-Y. Yu, Michael Pham, Keith L. Black, Xiao Z. Shen, Sebastien Fuchs, Maya Koronyo-Hamaoui

×

Figure 8

Retained cognition in 12-month-old AD+ACE10/10 mice.

Options: View larger image (or click on image) Download as PowerPoint
Retained cognition in 12-month-old AD+ACE10/10 mice.
 
Open field test a...
Open field test assessing ambulatory (A) and rearing (B) behavior. Only the ambulatory count for AD+ACEWT/WT versus AD–ACEWT/WT mice was significantly different. (C–F) Barnes maze assessment of spatial learning and memory following the same protocol as Figure 7. (C) Analysis of days 1–4 by 2-way ANOVA showed a significant difference between genotypes (P < 0.0001). Analysis of data from individual days by 1-way ANOVA showed significant differences between AD+ACEWT/WT and AD+ACE10/10 mice. There was no significant difference between the AD+ACE10/10 mice and the two populations of non-AD control mice. (D) After a hiatus of 2 days, memory retention was assessed on day 7. There was a 58% difference in the reduction of mean latency between AD+ACE10/10 and AD+ACEWT/WT mice. No statistical difference was observed between AD+ACE10/10 mice and the two non-AD control groups. (E and F) During the reversal phase, the location of the escape box was changed, and escape latency was measured. Data analysis by 2-way ANOVA showed a significant difference between genotypes (P < 0.0001). Again, there was no statistical difference between AD+ACE10/10 mice and the two control groups. On day 8, no significant differences were observed by 1-way ANOVA. Day 9 data analysis showed significant differences between AD+ACEWT/WT mice and the other groups. There was a 50% difference in the reduction of mean latency between the AD+ACEWT/WT and AD+ACE10/10 mice. n = 10–11 mice per group. *P < 0.05; **P < 0.001; ***P < 0.0001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 8 news outlets
Blogged by 1
Posted by 2 X users
On 2 Facebook pages
88 readers on Mendeley
1 readers on CiteULike
See more details