Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Angiotensin-converting enzyme overexpression in myelomonocytes prevents Alzheimer’s-like cognitive decline
Kenneth E. Bernstein, … , Sebastien Fuchs, Maya Koronyo-Hamaoui
Kenneth E. Bernstein, … , Sebastien Fuchs, Maya Koronyo-Hamaoui
Published February 3, 2014
Citation Information: J Clin Invest. 2014;124(3):1000-1012. https://doi.org/10.1172/JCI66541.
View: Text | PDF
Research Article Neuroscience

Angiotensin-converting enzyme overexpression in myelomonocytes prevents Alzheimer’s-like cognitive decline

  • Text
  • PDF
Abstract

Cognitive decline in patients with Alzheimer’s disease (AD) is associated with elevated brain levels of amyloid β protein (Aβ), particularly neurotoxic Aβ1–42. Angiotensin-converting enzyme (ACE) can degrade Aβ1–42, and ACE overexpression in myelomonocytic cells enhances their immune function. To examine the effect of targeted ACE overexpression on AD, we crossed ACE10/10 mice, which overexpress ACE in myelomonocytes using the c-fms promoter, with the transgenic APPSWE/PS1ΔE9 mouse model of AD (AD+). Evaluation of brain tissue from these AD+ACE10/10 mice at 7 and 13 months revealed that levels of both soluble and insoluble brain Aβ1–42 were reduced compared with those in AD+ mice. Furthermore, both plaque burden and astrogliosis were drastically reduced. Administration of the ACE inhibitor ramipril increased Aβ levels in AD+ACE10/10 mice compared with the levels induced by the ACE-independent vasodilator hydralazine. Overall, AD+ACE10/10 mice had less brain-infiltrating cells, consistent with reduced AD-associated pathology, though ACE-overexpressing macrophages were abundant around and engulfing Aβ plaques. At 11 and 12 months of age, the AD+ACE10/WT and AD+ACE10/10 mice were virtually equivalent to non-AD mice in cognitive ability, as assessed by maze-based behavioral tests. Our data demonstrate that an enhanced immune response, coupled with increased myelomonocytic expression of catalytically active ACE, prevents cognitive decline in a murine model of AD.

Authors

Kenneth E. Bernstein, Yosef Koronyo, Brenda C. Salumbides, Julia Sheyn, Lindsey Pelissier, Dahabada H.J. Lopes, Kandarp H. Shah, Ellen A. Bernstein, Dieu-Trang Fuchs, Jeff J.-Y. Yu, Michael Pham, Keith L. Black, Xiao Z. Shen, Sebastien Fuchs, Maya Koronyo-Hamaoui

×

Figure 4

Reduced soluble Aβ levels in AD+ACE10/10 and AD+ACE10/WT mice.

Options: View larger image (or click on image) Download as PowerPoint
Reduced soluble Aβ levels in AD+ACE10/10 and AD+ACE10/WT mice.
 
(A–C) E...
(A–C) ELISA measurements of soluble human Aβ1–42 in the brains of AD+ and AD– mice with the indicated ACE genotypes. Groups of mice were assessed at 5, 7, and 13 months of age. (D) ELISA measurement of soluble human Aβ1–40 from 7-month-old AD+ACEWT/WT, AD+ACE10/WT, and AD+ACE10/10 mice. Data for individual mice as well as for the group means and SEM are shown. Arrows indicate the percentage of reduction in the group means as compared with that in AD+ACEWT/WT mice. Also shown is the absolute reduction in Aβ1–42 (23 pg, 109 pg, and 324 pg) found in AD+ACE10/10 mice as compared with that seen in equivalently aged AD+ACEWT/WT mice. Soluble levels of both Aβ1–42 and Aβ1–40 were lower in AD+ACE10/10 mice than in AD+ACEWT/WT mice, as evidenced by the absolute reduction in Aβ1–42 levels. The difference between AD+ACE10/10 and AD+ACEWT/WT mice increased with age. n = 5–14 mice per group. *P < 0.05; **P < 0.001.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts