Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
An androgen receptor N-terminal domain antagonist for treating prostate cancer
Jae-Kyung Myung, … , Raymond J. Andersen, Marianne D. Sadar
Jae-Kyung Myung, … , Raymond J. Andersen, Marianne D. Sadar
Published June 3, 2013
Citation Information: J Clin Invest. 2013;123(7):2948-2960. https://doi.org/10.1172/JCI66398.
View: Text | PDF
Research Article Oncology Article has an altmetric score of 28

An androgen receptor N-terminal domain antagonist for treating prostate cancer

  • Text
  • PDF
Abstract

Hormone therapies for advanced prostate cancer target the androgen receptor (AR) ligand-binding domain (LBD), but these ultimately fail and the disease progresses to lethal castration-resistant prostate cancer (CRPC). The mechanisms that drive CRPC are incompletely understood, but may involve constitutively active AR splice variants that lack the LBD. The AR N-terminal domain (NTD) is essential for AR activity, but targeting this domain with small-molecule inhibitors is complicated by its intrinsic disorder. Here we investigated EPI-001, a small-molecule antagonist of AR NTD that inhibits protein-protein interactions necessary for AR transcriptional activity. We found that EPI analogs covalently bound the NTD to block transcriptional activity of AR and its splice variants and reduced the growth of CRPC xenografts. These findings suggest that the development of small-molecule inhibitors that bind covalently to intrinsically disordered proteins is a promising strategy for development of specific and effective anticancer agents.

Authors

Jae-Kyung Myung, Carmen A. Banuelos, Javier Garcia Fernandez, Nasrin R. Mawji, Jun Wang, Amy H. Tien, Yu Chi Yang, Iran Tavakoli, Simon Haile, Kate Watt, Iain J. McEwan, Stephen Plymate, Raymond J. Andersen, Marianne D. Sadar

×

Figure 3

Covalent binding of EPI-001 probes to AR in cells.

Options: View larger image (or click on image) Download as PowerPoint
Covalent binding of EPI-001 probes to AR in cells.
(A) Click-chemistry e...
(A) Click-chemistry experiment. (B) EPI probes used for Click-chemistry. (C) LNCaP cells treated with EPI-046, EPI-047, and EPI-051 were lysed prior to Click-chemistry. Biotin-labeled probes covalently bound to cellular proteins were detected using an antibody against biotin (left), and AR protein was detected using an antibody against AR (middle). β-actin is a loading control (right). Dotted red outlines denote AR and β-actin bands, as indicated. (D) Western blot analysis of biotin-labeled probes covalently bound to cellular proteins from LNCaP cells treated with EPI-054 before (right) or after Click-chemistry and streptavidin enrichment (left). Gels were probed using anti-biotin or anti-AR antibodies, as indicated. Arrows denote bands corresponding to AR (110 kDa). (E) LNCaP cells treated with EPI chiral probes were lysed prior to Click-chemistry, enriched using streptavidin, and probed using anti-biotin antibody (top). AR levels prior to Click-chemistry were detected using anti-AR441 antibody (input; bottom). (F) Cells transfected with FLAG-AR NTD or vector were treated with EPI analogs. Proteins were detected using anti-biotin, anti-AR NTD, or anti-FLAG antibodies following Click-chemistry and streptavidin enrichment (top) or cell lysates before Click-chemistry (input; middle and bottom). Asterisks denote proteins that were also detected with anti-biotin antibody in DMSO samples not treated with EPI-probes. Lanes in D–F were run on same gel but were noncontiguous (black lines).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 2 news outlets
Posted by 3 X users
Referenced in 29 patents
On 1 Facebook pages
Referenced in 2 Wikipedia pages
Highlighted by 1 platforms
170 readers on Mendeley
See more details