Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Inhibition of Coxsackievirus-associated dystrophin cleavage prevents cardiomyopathy
Byung-Kwan Lim, … , Ju Chen, Kirk U. Knowlton
Byung-Kwan Lim, … , Ju Chen, Kirk U. Knowlton
Published November 8, 2013
Citation Information: J Clin Invest. 2013;123(12):5146-5151. https://doi.org/10.1172/JCI66271.
View: Text | PDF
Brief Report Cardiology Article has an altmetric score of 10

Inhibition of Coxsackievirus-associated dystrophin cleavage prevents cardiomyopathy

  • Text
  • PDF
Abstract

Heart failure in children and adults is often the consequence of myocarditis associated with Coxsackievirus (CV) infection. Upon CV infection, enteroviral protease 2A cleaves a small number of host proteins including dystrophin, which links actin filaments to the plasma membrane of muscle fiber cells (sarcolemma). It is unknown whether protease 2A–mediated cleavage of dystrophin and subsequent disruption of the sarcolemma play a role in CV-mediated myocarditis. We generated knockin mice harboring a mutation at the protease 2A cleavage site of the dystrophin gene, which prevents dystrophin cleavage following CV infection. Compared with wild-type mice, we found that mice expressing cleavage-resistant dystrophin had a decrease in sarcolemmal disruption and cardiac virus titer following CV infection. In addition, cleavage-resistant dystrophin inhibited the cardiomyopathy induced by cardiomyocyte-restricted expression of the CV protease 2A transgene. These findings indicate that protease 2A–mediated cleavage of dystrophin is critical for viral propagation, enteroviral-mediated cytopathic effects, and the development of cardiomyopathy.

Authors

Byung-Kwan Lim, Angela K. Peter, Dingding Xiong, Anna Narezkina, Aaron Yung, Nancy D. Dalton, Kyung-Kuk Hwang, Toshitaka Yajima, Ju Chen, Kirk U. Knowlton

×

Figure 3

Prevention of dystrophin cleavage in DysKI/2A/MCM mice inhibits enteroviral protease 2A–mediated cardiomyopathy.

Options: View larger image (or click on image) Download as PowerPoint
Prevention of dystrophin cleavage in DysKI/2A/MCM mice inhibits enterovi...
(A) Whole hearts from control mice (see text), mice harboring wild-type dystrophin, protease 2A, and the MerCREMer transgenes (DysWT/2A/MCM), and mice harboring the dystrophin knockin, protease 2A, and the MerCREMer transgenes (DysKI/2A/MCM). Hearts were taken from these mice 4 weeks after tamoxifen administration and demonstrate that dystrophin knockin inhibited the gross appearance of dilated cardiomyopathy. (B) Echocardiographic parameters 4 weeks after tamoxifen administration. Left ventricular end-systolic dimension (LVESd), left ventricular end-diastolic dimension (LVEDd), and fractional shortening were significantly better in DysKI/2A/MCM mice than in DysWT/2A/MCM mice 4 weeks after the induction of protease 2A expression. Data represent the mean ± SEM. *P < 0.05, **P < 0.01; each data point is represented on the graphs. (C) The percentage of overall area showing EBD uptake (white stain, see arrow) was significantly reduced in DysKI/2A/MCM mice compared with DysWT/2A/MCM mice. Data represent the mean ± SEM. *P ≤ 0.05. Scale bar: 500 μm. (D) H&E, trichrome, and picrosirius red staining demonstrate that there was less fibrosis in DysKI/2A/MCM mice compared with DysWT/2A/MCM mice. Fibrosis was quantified using picrosirius red staining in 4 DysWT/2A/MCM and 4 DysKI/2A/MCM mice. Data represent the mean ± SEM. *P ≤ 0.05; **P < 0.01. Scale bar: 200 μm. (E) eIF4GI cleavage was detected in both DysWT/2A/MCM and DysKI/2A/MCM mouse hearts (arrow), but not in control hearts without protease 2A expression. Dystrophin cleavage was not detectable by Western blotting (not shown).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Referenced in 1 Wikipedia pages
40 readers on Mendeley
See more details