Myopia is by far the most common human eye disorder that is known to have a clear, albeit poorly defined, heritable component. In this study, we describe an autosomal-recessive syndrome characterized by high myopia and sensorineural deafness. Our molecular investigation in 3 families led to the identification of 3 homozygous nonsense mutations (p.R181X, p.S297X, and p.Q414X) in SLIT and NTRK-like family, member 6 (
Mustafa Tekin, Barry A. Chioza, Yoshifumi Matsumoto, Oscar Diaz-Horta, Harold E. Cross, Duygu Duman, Haris Kokotas, Heather L. Moore-Barton, Kazuto Sakoori, Maya Ota, Yuri S. Odaka, Joseph Foster II, F. Basak Cengiz, Suna Tokgoz-Yilmaz, Oya Tekeli, Maria Grigoriadou, Michael B. Petersen, Ajith Sreekantan-Nair, Kay Gurtz, Xia-Juan Xia, Arti Pandya, Michael A. Patton, Juan I. Young, Jun Aruga, Andrew H. Crosby
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 739 | 224 |
175 | 52 | |
Figure | 270 | 11 |
Table | 44 | 0 |
Supplemental data | 41 | 4 |
Citation downloads | 62 | 0 |
Totals | 1,331 | 291 |
Total Views | 1,622 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.