Diabetes elevates the risk for neurological diseases, but little is known about the underlying mechanisms. Brain-derived neurotrophic factor (BDNF) is secreted by microvascular endothelial cells (ECs) in the brain, functioning as a neuroprotectant through the activation of the neurotrophic tyrosine kinase receptor TRKB. In a rat model of streptozotocin-induced hyperglycemia, we found that endothelial activation of MMP9 altered TRKB-dependent trophic pathways by degrading TRKB in neurons. Treatment of brain microvascular ECs with advanced glycation endproducts (AGE), a metabolite commonly elevated in diabetic patients, increased MMP9 activation, similar to in vivo findings. Recombinant human MMP9 degraded the TRKB ectodomain in primary neuronal cultures, suggesting that TRKB could be a substrate for MMP9 proteolysis. Consequently, AGE-conditioned endothelial media with elevated MMP9 activity degraded the TRKB ectodomain and simultaneously disrupted the ability of endothelium to protect neurons against hypoxic injury. Our findings demonstrate that neuronal TRKB trophic function is ablated by MMP9-mediated degradation in the diabetic brain, disrupting cerebrovascular trophic coupling and leaving the brain vulnerable to injury.
Deepti Navaratna, Xiang Fan, Wendy Leung, Josephine Lok, Shuzhen Guo, Changhong Xing, Xiaoying Wang, Eng H. Lo
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 244 | 51 |
69 | 18 | |
Figure | 112 | 5 |
Supplemental data | 41 | 0 |
Citation downloads | 49 | 0 |
Totals | 515 | 74 |
Total Views | 589 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.