Increased expression of the glycoprotein tenascin-C (TN) is associated with progression of clinical and experimental pulmonary hypertension. In cultured smooth muscle cells (SMCs) TN is induced by matrix metalloproteinases (MMPs) and amplifies the proliferative response to growth factors. Conversely, suppression of TN leads to SMC apoptosis. We now report that hypertrophied rat pulmonary arteries in organ culture, which progressively thicken in association with cell proliferation and matrix accumulation, can be made to regress by inhibiting either serine elastases or MMPs. This effect is associated with reduced TN, suppression of SMC proliferation, and induction of apoptosis. Selective repression of TN by transfecting pulmonary arteries with antisense/ribozyme constructs also induces SMC apoptosis and arrests progressive vascular thickening but fails to induce regression. This failure is related to concomitant expansion of a SMC population, which produces an alternative cell survival αvβ3 ligand, osteopontin (OPN), in response to pro-proliferative cues provided by a proteolytic environment. OPN rescues MMP inhibitor–induced SMC apoptosis, and αvβ3 blockade induces apoptosis in hypertrophied arteries. Our data suggest that proteinase inhibition is a novel strategy to induce regression of vascular disease because this overcomes the pluripotentiality of SMC-matrix survival interactions and induces coordinated apoptosis and resorption of matrix.
Kyle Northcote Cowan, Peter Lloyd Jones, Marlene Rabinovitch
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 686 | 113 |
104 | 22 | |
Figure | 495 | 54 |
Citation downloads | 49 | 0 |
Totals | 1,334 | 189 |
Total Views | 1,523 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.