Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Lactate preserves neuronal metabolism and function following antecedent recurrent hypoglycemia
Raimund I. Herzog, … , Robert S. Sherwin, Kevin L. Behar
Raimund I. Herzog, … , Robert S. Sherwin, Kevin L. Behar
Published April 1, 2013
Citation Information: J Clin Invest. 2013;123(5):1988-1998. https://doi.org/10.1172/JCI65105.
View: Text | PDF
Research Article Article has an altmetric score of 31

Lactate preserves neuronal metabolism and function following antecedent recurrent hypoglycemia

  • Text
  • PDF
Abstract

Hypoglycemia occurs frequently during intensive insulin therapy in patients with both type 1 and type 2 diabetes and remains the single most important obstacle in achieving tight glycemic control. Using a rodent model of hypoglycemia, we demonstrated that exposure to antecedent recurrent hypoglycemia leads to adaptations of brain metabolism so that modest increments in circulating lactate allow the brain to function normally under acute hypoglycemic conditions. We characterized 3 major factors underlying this effect. First, we measured enhanced transport of lactate both into as well as out of the brain that resulted in only a small increase of its contribution to total brain oxidative capacity, suggesting that it was not the major fuel. Second, we observed a doubling of the glucose contribution to brain metabolism under hypoglycemic conditions that restored metabolic activity to levels otherwise only observed at euglycemia. Third, we determined that elevated lactate is critical for maintaining glucose metabolism under hypoglycemia, which preserves neuronal function. These unexpected findings suggest that while lactate uptake was enhanced, it is insufficient to support metabolism as an alternate substrate to replace glucose. Lactate is, however, able to modulate metabolic and neuronal activity, serving as a “metabolic regulator” instead.

Authors

Raimund I. Herzog, Lihong Jiang, Peter Herman, Chen Zhao, Basavaraju G. Sanganahalli, Graeme F. Mason, Fahmeed Hyder, Douglas L. Rothman, Robert S. Sherwin, Kevin L. Behar

×

Figure 1

Under hyperinsulinemic-hypoglycemic clamp conditions and [3-13C]-lactate infusion, animals preexposed to recurrent hypoglycemia show a markedly faster metabolite enrichment time course than controls.

Options: View larger image (or click on image) Download as PowerPoint
Under hyperinsulinemic-hypoglycemic clamp conditions and [3-13C]-lactate...
Shown here are group averages for (A) plasma glucose levels, (B) glucose infusion rates, (C) plasma lactate concentrations during tracer infusion, (D) plasma [3-13C]-lactate enrichment, (E) brain [4-13C-]-glutamate enrichment time courses, and (F) brain [4-13C]-glutamine enrichment during tracer infusion (black squares represent control, white squares represent 3dRH; [3-13C]-lactate infusion begins at time t = 0 minutes; data reflect mean ± SEM of 6 animals per group).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 3 news outlets
Posted by 4 X users
On 1 Facebook pages
Highlighted by 1 platforms
105 readers on Mendeley
1 readers on CiteULike
See more details