Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Efficacious proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma
Shruti Bhatt, … , Izidore S. Lossos, Juan Carlos Ramos
Shruti Bhatt, … , Izidore S. Lossos, Juan Carlos Ramos
Published May 1, 2013
Citation Information: J Clin Invest. 2013;123(6):2616-2628. https://doi.org/10.1172/JCI64503.
View: Text | PDF
Research Article Oncology Article has an altmetric score of 17

Efficacious proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma

  • Text
  • PDF
Abstract

Primary effusion lymphoma (PEL) is a rare form of aggressive B cell lymphoma caused by Kaposi’s sarcoma-associated herpesvirus (KSHV). Current chemotherapy approaches result in dismal outcomes, and there is an urgent need for new PEL therapies. Previously, we established, in a direct xenograft model of PEL-bearing immune-compromised mice, that treatment with the proteasome inhibitor, bortezomib (Btz), increased survival relative to that after treatment with doxorubicin. Herein, we demonstrate that the combination of Btz with the histone deacetylase (HDAC) inhibitor suberoylanilidehydroxamic acid (SAHA, also known as vorinostat) potently reactivates KSHV lytic replication and induces PEL cell death, resulting in significantly prolonged survival of PEL-bearing mice. Importantly, Btz blocked KSHV late lytic gene expression, terminally inhibiting the full lytic cascade and production of infectious virus in vivo. Btz treatment led to caspase activation and induced DNA damage, as evidenced by the accumulation of phosphorylated γH2AX and p53. The addition of SAHA to Btz treatment was synergistic, as SAHA induced early acetylation of p53 and reduced interaction with its negative regulator MDM2, augmenting the effects of Btz. The eradication of KSHV-infected PEL cells without increased viremia in mice provides a strong rationale for using the proteasome/HDAC inhibitor combination therapy in PEL.

Authors

Shruti Bhatt, Brittany M. Ashlock, Ngoc L. Toomey, Luis A. Diaz, Enrique A. Mesri, Izidore S. Lossos, Juan Carlos Ramos

×

Figure 6

Btz/SAHA potently induces KSHV lytic reactivation in vivo, while Btz inhibits the expression of key genes required to complete replicative cycle, resulting in inhibition of virus production.

Options: View larger image (or click on image) Download as PowerPoint
Btz/SAHA potently induces KSHV lytic reactivation in vivo, while Btz inh...
(A–D) Tumor-bearing mice were treated for 24 hours with indicated drugs, and UM-PEL-1 cells were harvested from peritoneal effusions for qRT-PCR analysis. The gray-colored long solid lines at “1” on the y axes represent the averaged value of DMSO-treated control mice to which the experimental mice were normalized. Each circle represents 1 mouse, and the horizontal bars indicate the mean fold induction. mRNA expression of KSHV (A) latent, (B) IE lytic, (C) early lytic, and (D) late lytic gene expression. Results are representative of 2 independent experiments. (E) Tumor-bearing mice were treated with a single dose of Btz, SAHA, or combination Btz/SAHA for 72 hours. Peritoneal effusions were harvested for virion quantification. The graph depicts the number of encapsidated viral DNA copies normalized to the volume of ascites recovered from a representative mouse. Error bars are SEM of quintuplicate wells.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 2 news outlets
Posted by 2 X users
37 readers on Mendeley
See more details