Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
11β-Hydroxysteroid dehydrogenase blockade prevents age-induced skin structure and function defects
Ana Tiganescu, … , Gareth G. Lavery, Paul M. Stewart
Ana Tiganescu, … , Gareth G. Lavery, Paul M. Stewart
Published June 3, 2013
Citation Information: J Clin Invest. 2013;123(7):3051-3060. https://doi.org/10.1172/JCI64162.
View: Text | PDF
Research Article Aging Article has an altmetric score of 27

11β-Hydroxysteroid dehydrogenase blockade prevents age-induced skin structure and function defects

  • Text
  • PDF
Abstract

Glucocorticoid (GC) excess adversely affects skin integrity, inducing thinning and impaired wound healing. Aged skin, particularly that which has been photo-exposed, shares a similar phenotype. Previously, we demonstrated age-induced expression of the GC-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in cultured human dermal fibroblasts (HDFs). Here, we determined 11β-HSD1 levels in human skin biopsies from young and older volunteers and examined the aged 11β-HSD1 KO mouse skin phenotype. 11β-HSD1 activity was elevated in aged human and mouse skin and in PE compared with donor-matched photo-protected human biopsies. Age-induced dermal atrophy with deranged collagen structural organization was prevented in 11β-HSD1 KO mice, which also exhibited increased collagen density. We found that treatment of HDFs with physiological concentrations of cortisol inhibited rate-limiting steps in collagen biosynthesis and processing. Furthermore, topical 11β-HSD1 inhibitor treatment accelerated healing of full-thickness mouse dorsal wounds, with improved healing also observed in aged 11β-HSD1 KO mice. These findings suggest that elevated 11β-HSD1 activity in aging skin leads to increased local GC generation, which may account for adverse changes occurring in the elderly, and 11β-HSD1 inhibitors may be useful in the treatment of age-associated impairments in dermal integrity and wound healing.

Authors

Ana Tiganescu, Abd A. Tahrani, Stuart A. Morgan, Marcela Otranto, Alexis Desmoulière, Lianne Abrahams, Zaki Hassan-Smith, Elizabeth A. Walker, Elizabeth H. Rabbitt, Mark S. Cooper, Kurt Amrein, Gareth G. Lavery, Paul M. Stewart

×

Figure 4

Improved collagen density in aged 11β-HSD1–null mice.

Options: View larger image (or click on image) Download as PowerPoint
Improved collagen density in aged 11β-HSD1–null mice.
Collagen staining ...
Collagen staining intensity appeared greater in aged KO (B) versus WT (A) mouse skin sections, contributing to the improved structural appearance in these mice. (C) Quantification of staining confirmed an increased collagen density in aged KO versus WT mice (n = 4), with a similar trend in young mice (n = 4). Scale bars: 50 μM. *P < 0.05.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 3 news outlets
Posted by 2 X users
Referenced in 10 patents
80 readers on Mendeley
See more details