Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes
Esther Fuente-Martín, … , Tamas L. Horvath, Julie A. Chowen
Esther Fuente-Martín, … , Tamas L. Horvath, Julie A. Chowen
Published October 15, 2012
Citation Information: J Clin Invest. 2012;122(11):3900-3913. https://doi.org/10.1172/JCI64102.
View: Text | PDF
Research Article Metabolism Article has an altmetric score of 13

Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes

  • Text
  • PDF
Abstract

Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity.

Authors

Esther Fuente-Martín, Cristina García-Cáceres, Miriam Granado, María L. de Ceballos, Miguel Ángel Sánchez-Garrido, Beatrix Sarman, Zhong-Wu Liu, Marcelo O. Dietrich, Manuel Tena-Sempere, Pilar Argente-Arizón, Francisca Díaz, Jesús Argente, Tamas L. Horvath, Julie A. Chowen

×

Figure 1

Modification of hypothalamic astrocytes in response to NeoON.

Options: View larger image (or click on image) Download as PowerPoint
Modification of hypothalamic astrocytes in response to NeoON.
(A) GFAP l...
(A) GFAP levels in the hypothalamus of rats from litters of 12 pups (control [Ct]) and litters of 4 pups with NeoON. (B) Photomicrographs of immunohistochemistry for GFAP in the arcuate nucleus of (B) control and (C) NeoON rats. Morphological analysis demonstrated that in NeoON adults, there was an increase in the number of GFAP+ cells in the arcuate nucleus (D) and the number of primary projections/GFAP+ cell (E), with no difference in the mean projection length (F). *P < 0.05; **P < 0.01; ***P < 0.001. Scale bars: 50 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Posted by 5 X users
On 3 Facebook pages
Mentioned in 1 Google+ posts
189 readers on Mendeley
See more details