Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Nanog signaling in cancer promotes stem-like phenotype and immune evasion
Kyung Hee Noh, … , T.-C. Wu, Tae Woo Kim
Kyung Hee Noh, … , T.-C. Wu, Tae Woo Kim
Published October 24, 2012
Citation Information: J Clin Invest. 2012;122(11):4077-4093. https://doi.org/10.1172/JCI64057.
View: Text | PDF
Research Article Oncology Article has an altmetric score of 15

Nanog signaling in cancer promotes stem-like phenotype and immune evasion

  • Text
  • PDF
Abstract

Adaptation of tumor cells to the host is a major cause of cancer progression, failure of therapy, and ultimately death. Immune selection drives this adaptation in human cancer by enriching tumor cells with a cancer stem cell–like (CSC-like) phenotype that makes them resistant to CTL-mediated apoptosis; however, the mechanisms that mediate CSC maintenance and proliferation are largely unknown. Here, we report that CTL-mediated immune selection drives the evolution of tumor cells toward a CSC-like phenotype and that the CSC-like phenotype arises through the Akt signaling pathway via transcriptional induction of Tcl1a by Nanog. Furthermore, we found that hyperactivation of the Nanog/Tcl1a/Akt signaling axis was conserved across multiple types of human cancer. Inhibition of Nanog in a murine model of colon cancer rendered tumor cells susceptible to immune-mediated clearance and led to successful, long-term control of the disease. Our findings establish a firm link among immune selection, disease progression, and the development of a stem-like tumor phenotype in human cancer and implicate the Nanog/Tcl1a/Akt pathway as a central molecular target in this process.

Authors

Kyung Hee Noh, Bo Wook Kim, Kwon-Ho Song, Hanbyoul Cho, Young-Ho Lee, Jin Hee Kim, Joon-Yong Chung, Jae-Hoon Kim, Stephen M. Hewitt, Seung-Yong Seong, Chih-Ping Mao, T.-C. Wu, Tae Woo Kim

×

Figure 9

Inhibition of Nanog renders the tumor vulnerable to immune-mediated control.

Options: View larger image (or click on image) Download as PowerPoint
Inhibition of Nanog renders the tumor vulnerable to immune-mediated cont...
(A) Diagram of the immune-based therapy regimen in mice implanted with HCT116 colon cancer cells transduced with plasmid encoding a SCT of H2-Db heavy chain linked to β2-microglobulin and the H2-Db–restricted E7 epitope (HCT116/SCT-E7). (B) Tumor growth and (C) survival of mice inoculated with HCT116/SCT-E7 and treated with the indicated reagents (5 mice/group). (D) Tumor mass of mice at 25 days after challenge. (E) Western blot analysis of Nanog, pAkt, Tcl1a, Mcl-1, cyclin A, and p21 expression in mice administered with siGFP or siNanog, with or without adoptive transfer of E7-specific CTLs. β-Actin was included as an internal loading control. Numbers below blots indicate expression as measured by fold change. (F) Flow cytometry analysis of the proliferation index of cells inside the tumor, as measured by the mean fluorescence intensity of Ki67 staining. (G) Flow cytometry analysis of the frequency of CFSE-labeled, E7-specific CTLs in the tumors of mice that received adoptive transfer, together with either siGFP or siNanog. (H) Flow cytometry analysis of the frequency of apoptotic (active caspase-3+) cells in the tumors of siGFP- or siNanog-treated mice, with or without adoptive transfer of E7-specific CTLs. Error bars represent mean ± SD.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Posted by 3 X users
Referenced in 1 patents
On 1 Facebook pages
106 readers on Mendeley
See more details