Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
IQGAP1 suppresses TβRII-mediated myofibroblastic activation and metastatic growth in liver
Chunsheng Liu, … , Vijay H. Shah, Ningling Kang
Chunsheng Liu, … , Vijay H. Shah, Ningling Kang
Published February 1, 2013
Citation Information: J Clin Invest. 2013;123(3):1138-1156. https://doi.org/10.1172/JCI63836.
View: Text | PDF
Research Article Oncology

IQGAP1 suppresses TβRII-mediated myofibroblastic activation and metastatic growth in liver

  • Text
  • PDF
Abstract

In the tumor microenvironment, TGF-β induces transdifferentiation of quiescent pericytes and related stromal cells into myofibroblasts that promote tumor growth and metastasis. The mechanisms governing myofibroblastic activation remain poorly understood, and its role in the tumor microenvironment has not been explored. Here, we demonstrate that IQ motif containing GTPase activating protein 1 (IQGAP1) binds to TGF-β receptor II (TβRII) and suppresses TβRII-mediated signaling in pericytes to prevent myofibroblastic differentiation in the tumor microenvironment. We found that TGF-β1 recruited IQGAP1 to TβRII in hepatic stellate cells (HSCs), the resident liver pericytes. Iqgap1 knockdown inhibited the targeting of the E3 ubiquitin ligase SMAD ubiquitination regulatory factor 1 (SMURF1) to the plasma membrane and TβRII ubiquitination and degradation. Thus, Iqgap1 knockdown stabilized TβRII and potentiated TGF-β1 transdifferentiation of pericytes into myofibroblasts in vitro. Iqgap1 deficiency in HSCs promoted myofibroblast activation, tumor implantation, and metastatic growth in mice via upregulation of paracrine signaling molecules. Additionally, we found that IQGAP1 expression was downregulated in myofibroblasts associated with human colorectal liver metastases. Taken together, our studies demonstrate that IQGAP1 in the tumor microenvironment suppresses TβRII and TGF-β dependent myofibroblastic differentiation to constrain tumor growth.

Authors

Chunsheng Liu, Daniel D. Billadeau, Haitham Abdelhakim, Edward Leof, Kozo Kaibuchi, Carmelo Bernabeu, George S. Bloom, Liu Yang, Lisa Boardman, Vijay H. Shah, Ningling Kang

×

Figure 7

IQGAP1 deficiency in the liver promotes myofibroblastic activation and lung liver metastases in mice.

Options: View larger image (or click on image) Download as PowerPoint
IQGAP1 deficiency in the liver promotes myofibroblastic activation and l...
(A) Depiction of portal vein implantation of LLCs into the livers of mice. (B) Left: average tumor weight of Iqgap1–/– livers was significantly higher than that of Iqgap1+/+ livers at 10 days after tumor implantation. *P < 0.05 by t test. Right: representative photographs of liver and liver metastases (mets) of mice are shown. (C) WB on isolated liver metastases revealed that the average level of α-SMA or TβRII of the liver metastases of Iqgap1–/– mice was significantly higher than that of Iqgap1+/+ mice. GAPDH WB was used as a protein loading control. *P < 0.05; **P < 0.01 by ANOVA. (D) Representative images of α-SMA IF (green) and H&E staining revealing more tumor-associated myofibroblasts in the liver metastases of Iqgap1–/– mice as compared with Iqgap1+/+ mice. Cell nuclei were counterstained by TOTO-3 (blue). MFs, tumor-associated myofibroblasts. Scale bar: 50 μM.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts