Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
GATA4 and GATA6 control mouse pancreas organogenesis
Manuel Carrasco, … , Francisco Martín, Anabel Rojas
Manuel Carrasco, … , Francisco Martín, Anabel Rojas
Published September 24, 2012
Citation Information: J Clin Invest. 2012;122(10):3504-3515. https://doi.org/10.1172/JCI63240.
View: Text | PDF
Research Article Article has an altmetric score of 1

GATA4 and GATA6 control mouse pancreas organogenesis

  • Text
  • PDF
Abstract

Recently, heterozygous mutations in GATA6 have been found in neonatal diabetic patients with failed pancreatic organogenesis. To investigate the roles of GATA4 and GATA6 in mouse pancreas organogenesis, we conditionally inactivated these genes within the pancreas. Single inactivation of either gene did not have a major impact on pancreas formation, indicating functional redundancy. However, double Gata4/Gata6 mutant mice failed to develop pancreata, died shortly after birth, and displayed hyperglycemia. Morphological defects in Gata4/Gata6 mutant pancreata were apparent during embryonic development, and the epithelium failed to expand as a result of defects in cell proliferation and differentiation. The number of multipotent pancreatic progenitors, including PDX1+ cells, was reduced in the Gata4/Gata6 mutant pancreatic epithelium. Remarkably, deletion of only 1 Gata6 allele on a Gata4 conditional knockout background severely reduced pancreatic mass. In contrast, a single WT allele of Gata4 in Gata6 conditional knockout mice was sufficient for normal pancreatic development, indicating differential contributions of GATA factors to pancreas formation. Our results place GATA factors at the top of the transcriptional network hierarchy controlling pancreas organogenesis.

Authors

Manuel Carrasco, Irene Delgado, Bernat Soria, Francisco Martín, Anabel Rojas

×

Figure 6

GATA4 and GATA6 bind to the Pdx1 conserved area III in vitro and in pancreatic cell line.

Options: View larger image (or click on image) Download as PowerPoint
GATA4 and GATA6 bind to the Pdx1 conserved area III in vitro and in panc...
(A) Highly conserved region in the cis-regulatory area III of Pdx1. Two conserved GATA sites, as revealed by bioinformatics analysis, are shown in blue boxes. Numbers indicate the position of the GATA sites relative to the Pdx1 translational start site. Point mutations introduced into GATA sites, G1m and G2m, are indicated in red lowercase. Asterisks denote nucleotides that have been perfectly conserved between mouse and human. (B) Recombinant GATA4 and GATA6 proteins are able to bind to G1 and G2 GATA sites of the Pdx1 enhancer as shown by EMSA. Competition experiments were performed by adding excess unlabeled probes of G1, G2, or control (denoted as c in competitor row) GATA sites, and the corresponding mutant versions (G1m, G2m, or cm) to the binding reaction. (C) ChIP experiments performed in mouse pancreatic ductal cells (mPAC cells) using specific GATA4 and GATA6 antibodies (lanes 2, 3, respectively) and nonspecific anti-IgG (lane 4) show that anti-GATA4 and anti-GATA6 antibodies are able to immunoprecipitate the GATA sites of the Pdx1 conserved area III, but not nonspecific genomic regions. Lane 1 contains PCR products from input DNA (Inp) amplified prior to immunoprecipitation. Sizes of the PCR products in bp are shown on the right. (D) A WT Pdx1 promoter-luciferase construct (pGL3-Pdx1-WT) is significantly activated by endogenous factors present in mPAC cells compared with the activity of the empty reporter pGL3 vector. Mutations in the GATA sites of Pdx1 (pGL3-Pdx1-mut) significantly attenuate the luciferase activity. *P = 0.002; **P = 0.005.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 1 X users
On 1 Facebook pages
129 readers on Mendeley
See more details