Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Regenerating new heart with stem cells
Piero Anversa, … , Marcello Rota, Annarosa Leri
Piero Anversa, … , Marcello Rota, Annarosa Leri
Published January 2, 2013
Citation Information: J Clin Invest. 2013;123(1):62-70. https://doi.org/10.1172/JCI63068.
View: Text | PDF | Retraction
Review Series

Regenerating new heart with stem cells

  • Text
  • PDF
Abstract

This article discusses current understanding of myocardial biology, emphasizing the regeneration potential of the adult human heart and the mechanisms involved. In the last decade, a novel conceptual view has emerged. The heart is no longer considered a postmitotic organ, but is viewed as a self-renewing organ characterized by a resident stem cell compartment responsible for tissue homeostasis and cardiac repair following injury. Additionally, HSCs possess the ability to transdifferentiate and acquire the cardiomyocyte, vascular endothelial, and smooth muscle cell lineages. Both cardiac and hematopoietic stem cells may be used therapeutically in an attempt to reverse the devastating consequences of chronic heart failure of ischemic and nonischemic origin.

Authors

Piero Anversa, Jan Kajstura, Marcello Rota, Annarosa Leri

×

Figure 4

Transdifferentiation of c-kit–positive HSCs.

Options: View larger image (or click on image) Download as PowerPoint
Transdifferentiation of c-kit–positive HSCs.
(A) Schematic representatio...
(A) Schematic representation of transgene constructs used in the generation of donor mice for the acquisition of HSCs to be delivered after infarction. In each case, the promoter that controls the ubiquitous (β-actin) or myocyte-restricted (α-MHC) expression of the transgene (EGFP or c-myc–tagged nuclear-targeted Akt) is shown. c-kit–positive HSCs from donor males were injected intramyocardially in wild-type female infarcted mice. NLS, nuclear localization signal (ref. 75). (B) Infarcted female mouse treated with male HSCs. Regenerated myocytes (left; MHC, red) carry the Y chromosome (center; Y-chr; white dots in nuclei). Merged image is shown at right. Arrows indicate non-regenerated infarct. A thin layer of spared myocytes is present in the epimyocardium (EP) and endomyocardium (EN) (ref. 75). Scale bar: 50 μm. (C) Examples of myocytes isolated from the regenerated myocardium of mice injected with HSCs collected from β-actin EGFP, α-MHC EGFP, or α-MHC c-myc–tagged nuclear-targeted Akt mice. Top panels illustrate the localization of EGFP (left and middle, green; arrowheads) and c-myc (right, yellow nuclei; arrows) in newly formed cardiomyocytes. Bottom panels show the colocalization of α-SA and EGFP (yellow, arrowheads) and of α-SA and c-myc (yellow nuclei, arrows). Large spared myocytes negative for EGFP or c-myc are also present (ref. 75). Scale bar: 50 μm. (D) Myocyte-specific ionic currents and action potentials of a cell isolated from the regenerated infarcted myocardium. EGFP-positive myocytes show contractile activity (bottom). Original magnification, ×200. Reproduced with permission from Proceedings of the National Academy of Sciences of the United States of America (ref. 75; copyright 2007, National Academy of Sciences, USA).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts