Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Intravital 2-photon imaging of leukocyte trafficking in beating heart
Wenjun Li, … , Mark J. Miller, Daniel Kreisel
Wenjun Li, … , Mark J. Miller, Daniel Kreisel
Published June 18, 2012
Citation Information: J Clin Invest. 2012;122(7):2499-2508. https://doi.org/10.1172/JCI62970.
View: Text | PDF
Technical Advance Cardiology Article has an altmetric score of 14

Intravital 2-photon imaging of leukocyte trafficking in beating heart

  • Text
  • PDF
Abstract

Two-photon intravital microscopy has substantially broadened our understanding of tissue- and organ-specific differences in the regulation of inflammatory responses. However, little is known about the dynamic regulation of leukocyte recruitment into inflamed heart tissue, largely due to technical difficulties inherent in imaging moving tissue. Here, we report a method for imaging beating murine hearts using intravital 2-photon microscopy. Using this method, we visualized neutrophil trafficking at baseline and during inflammation. Ischemia reperfusion injury induced by transplantation or transient coronary artery ligation led to recruitment of neutrophils to the heart, their extravasation from coronary veins, and infiltration of the myocardium where they formed large clusters. Grafting hearts containing mutant ICAM-1, a ligand important for neutrophil recruitment, reduced the crawling velocities of neutrophils within vessels, and markedly inhibited their extravasation. Similar impairment was seen with the inhibition of Mac-1, a receptor for ICAM-1. Blockade of LFA-1, another ICAM-1 receptor, prevented neutrophil adherence to endothelium and extravasation in heart grafts. As inflammatory responses in the heart are of great relevance to public health, this imaging approach holds promise for studying cardiac-specific mechanisms of leukocyte recruitment and identifying novel therapeutic targets for treating heart disease.

Authors

Wenjun Li, Ruben G. Nava, Alejandro C. Bribriesco, Bernd H. Zinselmeyer, Jessica H. Spahn, Andrew E. Gelman, Alexander S. Krupnick, Mark J. Miller, Daniel Kreisel

×

Figure 7

Intravital 2P imaging of the native murine heart.

Options: View larger image (or click on image) Download as PowerPoint
Intravital 2P imaging of the native murine heart.
B6 LysM-GFP hearts wer...
B6 LysM-GFP hearts were imaged in their natural intrathoracic position. All mice tolerated imaging for at least 1 hour, with the majority of imaging periods lasting more than 3 hours. (A, Supplemental Video 9) Sequential video-rate frames of 2 neutrophils (yellow arrowhead with yellow track and white arrowhead with white track) moving through a coronary artery. The measured speed of the neutrophil marked in yellow is 1875.2 μm/s. (B) Representative images of native hearts in the steady state depicting capillaries (red, left panel) and a vein (red, right panel). Only few neutrophils (green) are visible. (C, E, G) 2P microscopy of beating native hearts after ischemia/reperfusion induced through transient ligation of the left coronary artery. (C) Intravascular rolling behavior of neutrophils (white arrowheads) was observed in coronary veins (white track). (D) Analysis of rolling velocities in native hearts subjected to ischemia/reperfusion injury. (E) Crawling behavior (yellow arrowhead) was associated with cell flattening along the endothelium. A second crawling neutrophil is indicated by a white arrowhead and white track. (F) Analysis of crawling velocities in native hearts subjected to ischemia/reperfusion injury. Symbols represent individual cells, horizontal bars depict mean, and error bars represent SEM. (G, Supplemental Video 10) Dynamic neutrophil clusters (yellow arrowheads) in myocardial tissue of native hearts that have been subjected to ischemia/reperfusion injury. Blood vessels (red) were labeled by intravenous injection of nontargeted 655-nm Q-dots. Relative time is displayed in h:min:s. Scale bars: 60 μm. Data are representative of 4 independent experiments.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Posted by 3 X users
On 1 Facebook pages
108 readers on Mendeley
See more details