Aspirin causes bronchoconstriction in aspirin-intolerant asthma (AIA) patients by triggering cysteinyl-leukotriene (cys-LT) production, probably by removing PGE2-dependent inhibition. To investigate why aspirin does not cause bronchoconstriction in all individuals, we immunostained enzymes of the leukotriene and prostanoid pathways in bronchial biopsies from AIA patients, aspirin-tolerant asthma (ATA) patients, and normal (N) subjects. Counts of cells expressing the terminal enzyme for cys-LT synthesis, LTC4 synthase, were fivefold higher in AIA biopsies (11.5+/-2.2 cells/mm2, n = 10) than in ATA biopsies (2.2+/-0.7, n = 10; P = 0. 0006) and 18-fold higher than in N biopsies (0.6+/-0.4, n = 9; P = 0. 0002). Immunostaining for 5-lipoxygenase, its activating protein (FLAP), LTA4 hydrolase, cyclooxygenase (COX)-1, and COX-2 did not differ. Enhanced baseline cys-LT levels in bronchoalveolar lavage (BAL) fluid of AIA patients correlated uniquely with bronchial counts of LTC4 synthase+ cells (rho = 0.83, P = 0.01). Lysine-aspirin challenge released additional cys-LTs into BAL fluid in AIA patients (200+/-120 pg/ml, n = 8) but not in ATA patients (0. 7+/-5.1, n = 5; P = 0.007). Bronchial responsiveness to lysine-aspirin correlated exclusively with LTC4 synthase+ cell counts (rho = -0.63, P = 0.049, n = 10). Aspirin may remove PGE2-dependent suppression in all subjects, but only in AIA patients does increased bronchial expression of LTC4 synthase allow marked overproduction of cys-LTs leading to bronchoconstriction.
A S Cowburn, K Sladek, J Soja, L Adamek, E Nizankowska, A Szczeklik, B K Lam, J F Penrose, F K Austen, S T Holgate, A P Sampson
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 235 | 42 |
52 | 57 | |
Citation downloads | 39 | 0 |
Totals | 326 | 99 |
Total Views | 425 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.