Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Regulation of lipogenesis by cyclin-dependent kinase 8–mediated control of SREBP-1
Xiaoping Zhao, … , Jun-Yuan Ji, Fajun Yang
Xiaoping Zhao, … , Jun-Yuan Ji, Fajun Yang
Published June 11, 2012
Citation Information: J Clin Invest. 2012;122(7):2417-2427. https://doi.org/10.1172/JCI61462.
View: Text | PDF
Research Article Metabolism

Regulation of lipogenesis by cyclin-dependent kinase 8–mediated control of SREBP-1

  • Text
  • PDF
Abstract

Altered lipid metabolism underlies several major human diseases, including obesity and type 2 diabetes. However, lipid metabolism pathophysiology remains poorly understood at the molecular level. Insulin is the primary stimulator of hepatic lipogenesis through activation of the SREBP-1c transcription factor. Here we identified cyclin-dependent kinase 8 (CDK8) and its regulatory partner cyclin C (CycC) as negative regulators of the lipogenic pathway in Drosophila, mammalian hepatocytes, and mouse liver. The inhibitory effect of CDK8 and CycC on de novo lipogenesis was mediated through CDK8 phosphorylation of nuclear SREBP-1c at a conserved threonine residue. Phosphorylation by CDK8 enhanced SREBP-1c ubiquitination and protein degradation. Importantly, consistent with the physiologic regulation of lipid biosynthesis, CDK8 and CycC proteins were rapidly downregulated by feeding and insulin, resulting in decreased SREBP-1c phosphorylation. Moreover, overexpression of CycC efficiently suppressed insulin and feeding–induced lipogenic gene expression. Taken together, these results demonstrate that CDK8 and CycC function as evolutionarily conserved components of the insulin signaling pathway in regulating lipid homeostasis.

Authors

Xiaoping Zhao, Daorong Feng, Qun Wang, Arian Abdulla, Xiao-Jun Xie, Jie Zhou, Yan Sun, Ellen S. Yang, Lu-Ping Liu, Bhavapriya Vaitheesvaran, Lauren Bridges, Irwin J. Kurland, Randy Strich, Jian-Quan Ni, Chenguang Wang, Johan Ericsson, Jeffrey E. Pessin, Jun-Yuan Ji, Fajun Yang

×

Figure 7

Regulation of CDK8 and CycC by feeding and insulin.

Options: View larger image (or click on image) Download as PowerPoint
Regulation of CDK8 and CycC by feeding and insulin.
(A) The indicated nu...
(A) The indicated nuclear protein levels in livers of mice that were fasted for 12 hours (Fasted) or fasted for 12 hours followed by 5 hours re-feeding with normal mouse chow (Re-fed). (B and C) Effects of 200 nM insulin on the protein levels of CDK8 and CycC (B) and phosphorylation levels at TP motifs of immunoprecipitated SREBP-1c (C) in primary rat hepatocytes for 1 hour. (D) Effects of overexpressed CycC on insulin-mediated regulation of nuclear SREBP-1a in HEK293 cells. HA-tagged Gal4 DNA-binding domain–fused Myb-TAD served as the invariant control. (E) Effects of overexpressed CycC on insulin-induced activation of the FAS promoter in HEK293 cells by luciferase reporter assays. The firefly luciferase activity of each sample was normalized by the Renilla luciferase activity of cotransfected reporter under the control of a basal promoter (n = 3). (F) In Drosophila larvae, overexpression of CycC in fat body (FB-Gal4/UAS-CycC [FB>CycC+]) inhibits the re-feeding–induced increase in lipogenic gene expression. The third instar larvae were either fasted for 15 hours only or fasted for 15 hours followed by re-feeding for 5 hours. n = 3 with 10 larvae in each group; *P < 0.01 versus control (in the presence of insulin or re-fed).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts