Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation
Yanqiu Liu, … , Napoleone Ferrara, Bjorn R. Olsen
Yanqiu Liu, … , Napoleone Ferrara, Bjorn R. Olsen
Published August 13, 2012
Citation Information: J Clin Invest. 2012;122(9):3101-3113. https://doi.org/10.1172/JCI61209.
View: Text | PDF
Research Article Bone biology Article has an altmetric score of 10

Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation

  • Text
  • PDF
Abstract

Osteoporotic bones have reduced spongy bone mass, altered bone architecture, and increased marrow fat. Bone marrow stem cells from osteoporotic patients are more likely to differentiate into adipocytes than control cells, suggesting that adipocyte differentiation may play a role in osteoporosis. VEGF is highly expressed in osteoblastic precursor cells and is known to stimulate bone formation. Here we tested the hypothesis that VEGF is also an important regulator of cell fate, determining whether differentiation gives rise to osteoblasts or adipocytes. Mice with conditional VEGF deficiency in osteoblastic precursor cells exhibited an osteoporosis-like phenotype characterized by reduced bone mass and increased bone marrow fat. In addition, reduced VEGF expression in mesenchymal stem cells resulted in reduced osteoblast and increased adipocyte differentiation. Osteoblast differentiation was reduced when VEGF receptor 1 or 2 was knocked down but was unaffected by treatment with recombinant VEGF or neutralizing antibodies against VEGF. Our results suggested that VEGF controls differentiation in mesenchymal stem cells by regulating the transcription factors RUNX2 and PPARγ2 as well as through a reciprocal interaction with nuclear envelope proteins lamin A/C. Importantly, our data support a model whereby VEGF regulates differentiation through an intracrine mechanism that is distinct from the role of secreted VEGF and its receptors.

Authors

Yanqiu Liu, Agnes D. Berendsen, Shidong Jia, Sutada Lotinun, Roland Baron, Napoleone Ferrara, Bjorn R. Olsen

×

Figure 3

Histomorphometric analysis of control and Vegfa CKO mice.

Options: View larger image (or click on image) Download as PowerPoint
Histomorphometric analysis of control and Vegfa CKO mice.
 
(A) Reduced ...
(A) Reduced bone volume/tissue volume in Vegfa CKO mice. *P < 0.05 versus control mice. (B) Reduced trabecular number (Tb.N) in Vegfa CKO mice. *P < 0.05 versus control mice. (C) Reduced osteoblast number per tissue area (N.Ob/T.Ar) in Vegfa CKO mice. *P < 0.05 versus control mice. (D) No difference in bone formation rate was observed when expressed per bone surface (BFR/BS) between control and Vegfa CKO mice. (E) Reduced bone formation rate per tissue volume (BFR/TV) in Vegfa CKO mice. *P < 0.05 versus control mice. (F) Dramatically increased adipocyte number per tissue area in Vegfa CKO mice. *P < 0.01 versus control mice. See also Supplemental Table 2.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 7 X users
Referenced in 2 patents
On 1 Facebook pages
241 readers on Mendeley
See more details