Myeloid-derived suppressor cells (MDSC) play a key immunosuppressive role in various types of cancer, including head and neck squamous cell carcinoma (HNSCC). In this study, we characterized CD14+HLA-DR–/lo cells sorted from the tumors, draining lymph nodes, and peripheral blood of HNSCC patients. CD14+HLA-DR–/lo cells were phenotyped as CD11b+, CD33+, CD34+, arginase-I+, and ROS+. In all 3 compartments, they suppressed autologous, antigen-independent T cell proliferation in a differential manner. The abundance of MDSC correlated with stage, but did not correlate with previous treatment with radiation or subsites of HNSCC. Interestingly, MDSC from all 3 compartments showed high phosphorylated STAT3 levels that correlated with arginase-I expression levels and activity. Stattic, a STAT3-specific inhibitor, and STAT3-targeted siRNA abrogated MDSC’s suppressive function. Inhibition of STAT3 signaling also resulted in decreased arginase-I activity. Analysis of the human arginase-I promoter region showed multiple STAT3-binding elements, and ChIP demonstrated that phosphorylated STAT3 binds to multiple sites in the arginase-I promoter. Finally, rescue of arginase-I activity after STAT3 blockade restored MDSC’s suppressive function. Taken together, these results demonstrate that the suppressive function of arginase-I in both infiltrating and circulating MDSC is a downstream target of activated STAT3.
David Vasquez-Dunddel, Fan Pan, Qi Zeng, Mikhail Gorbounov, Emilia Albesiano, Juan Fu, Richard L. Blosser, Ada J. Tam, Tullia Bruno, Hao Zhang, Drew Pardoll, Young Kim
Suppressive function of MDSC can be rescued by adding back ARG1 to STAT3-blocked MDSC.