Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation
Mitchell R. McGill, … , Steven C. Curry, Hartmut Jaeschke
Mitchell R. McGill, … , Steven C. Curry, Hartmut Jaeschke
Published March 1, 2012
Citation Information: J Clin Invest. 2012;122(4):1574-1583. https://doi.org/10.1172/JCI59755.
View: Text | PDF
Research Article Hepatology

The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation

  • Text
  • PDF
Abstract

Acetaminophen (APAP) overdose is the predominant cause of acute liver failure in the United States. Toxicity begins with a reactive metabolite that binds to proteins. In rodents, this leads to mitochondrial dysfunction and nuclear DNA fragmentation, resulting in necrotic cell death. While APAP metabolism is similar in humans, the later events resulting in toxicity have not been investigated in patients. In this study, levels of biomarkers of mitochondrial damage (glutamate dehydrogenase [GDH] and mitochondrial DNA [mtDNA]) and nuclear DNA fragments were measured in plasma from APAP-overdose patients. Overdose patients with no or minimal hepatic injury who had normal liver function tests (LTs) (referred to herein as the normal LT group) and healthy volunteers served as controls. Peak GDH activity and mtDNA concentration were increased in plasma from patients with abnormal LT. Peak nuclear DNA fragmentation in the abnormal LT cohort was also increased over that of controls. Parallel studies in mice revealed that these plasma biomarkers correlated well with tissue injury. Caspase-3 activity and cleaved caspase-3 were not detectable in plasma from overdose patients or mice, but were elevated after TNF-induced apoptosis, indicating that APAP overdose does not cause apoptosis. Thus, our results suggest that mitochondrial damage and nuclear DNA fragmentation are likely to be critical events in APAP hepatotoxicity in humans, resulting in necrotic cell death.

Authors

Mitchell R. McGill, Matthew R. Sharpe, C. David Williams, Mohammad Taha, Steven C. Curry, Hartmut Jaeschke

×

Figure 2

mtDNA in plasma from APAP-overdose patients.

Options: View larger image (or click on image) Download as PowerPoint
mtDNA in plasma from APAP-overdose patients.
The concentration of mtDNA ...
The concentration of mtDNA was determined in the plasma of patients after APAP overdose. Concentrations were measured by absolute quantification real-time PCR using primers for subunits of complex I (NADH deh) and complex IV (Cyt c ox) of the electron transport chain exclusively encoded in mtDNA. (A and B) Time course data from 2 representative patients (Pt) showing both mtDNA concentration (Cyt c ox) and ALT activity in plasma. (C) Scatterplot of peak plasma ALT activity against peak mtDNA (Cyt c ox) concentration in plasma from patients of the abnormal LT group. Pearson’s correlation coefficient is shown. (D) Average mtDNA concentrations in plasma from healthy volunteers (n = 6), normal LT group (n = 20), and abnormal LT group (n = 20), expressed as mean ± SEM. *P < 0.05 compared with healthy volunteers.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts