Increased endogenous glucose production (EGP) is a hallmark of type 2 diabetes mellitus. While there is evidence for central regulation of EGP by activation of hypothalamic ATP-sensitive potassium (KATP) channels in rodents, whether these central pathways contribute to regulation of EGP in humans remains to be determined. Here we present evidence for central nervous system regulation of EGP in humans that is consistent with complementary rodent studies. Oral administration of the KATP channel activator diazoxide under fixed hormonal conditions substantially decreased EGP in nondiabetic humans and Sprague Dawley rats. In rats, comparable doses of oral diazoxide attained appreciable concentrations in the cerebrospinal fluid, and the effects of oral diazoxide were abolished by i.c.v. administration of the KATP channel blocker glibenclamide. These results suggest that activation of hypothalamic KATP channels may be an important regulator of EGP in humans and that this pathway could be a target for treatment of hyperglycemia in type 2 diabetes mellitus.
Preeti Kishore, Laura Boucai, Kehao Zhang, Weijie Li, Sudha Koppaka, Sylvia Kehlenbrink, Anna Schiwek, Yonah B. Esterson, Deeksha Mehta, Samar Bursheh, Ya Su, Roger Gutierrez-Juarez, Radhika Muzumdar, Gary J. Schwartz, Meredith Hawkins
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 627 | 86 |
119 | 51 | |
Figure | 131 | 6 |
Supplemental data | 44 | 7 |
Citation downloads | 49 | 0 |
Totals | 970 | 150 |
Total Views | 1,120 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.