Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Ciliogenesis is regulated by a huntingtin-HAP1-PCM1 pathway and is altered in Huntington disease
Guy Keryer, Jose R. Pineda, Géraldine Liot, Jinho Kim, Paula Dietrich, Caroline Benstaali, Karen Smith, Fabrice P. Cordelières, Nathalie Spassky, Robert J. Ferrante, Ioannis Dragatsis, Frédéric Saudou
Guy Keryer, Jose R. Pineda, Géraldine Liot, Jinho Kim, Paula Dietrich, Caroline Benstaali, Karen Smith, Fabrice P. Cordelières, Nathalie Spassky, Robert J. Ferrante, Ioannis Dragatsis, Frédéric Saudou
View: Text | PDF
Research Article

Ciliogenesis is regulated by a huntingtin-HAP1-PCM1 pathway and is altered in Huntington disease

  • Text
  • PDF
Abstract

Huntington disease (HD) is a devastating autosomal-dominant neurodegenerative disorder. It is caused by expansion of a CAG repeat in the first exon of the huntingtin (HTT) gene that encodes a mutant HTT protein with a polyglutamine (polyQ) expansion at the amino terminus. Here, we demonstrate that WT HTT regulates ciliogenesis by interacting through huntingtin-associated protein 1 (HAP1) with pericentriolar material 1 protein (PCM1). Loss of Htt in mouse cells impaired the retrograde trafficking of PCM1 and thereby reduced primary cilia formation. In mice, deletion of Htt in ependymal cells led to PCM1 mislocalization, alteration of the cilia layer, and hydrocephalus. Pathogenic polyQ expansion led to centrosomal accumulation of PCM1 and abnormally long primary cilia in mouse striatal cells. PCM1 accumulation in ependymal cells was associated with longer cilia and disorganized cilia layers in a mouse model of HD and in HD patients. Longer cilia resulted in alteration of the cerebrospinal fluid flow. Thus, our data indicate that WT HTT is essential for protein trafficking to the centrosome and normal ciliogenesis. In HD, hypermorphic ciliogenesis may affect signaling and neuroblast migration so as to dysregulate brain homeostasis and exacerbate disease progression.

Authors

Guy Keryer, Jose R. Pineda, Géraldine Liot, Jinho Kim, Paula Dietrich, Caroline Benstaali, Karen Smith, Fabrice P. Cordelières, Nathalie Spassky, Robert J. Ferrante, Ioannis Dragatsis, Frédéric Saudou

×

Figure 7

Ependymal cilia orientation and flow are altered in HD mice.

Options: View larger image (or click on image) Download as PowerPoint
Ependymal cilia orientation and flow are altered in HD mice.
(A) Scannin...
(A) Scanning electron microscopy of lateral wall of the lateral ventricle from Hdh+/+, Hdh+/Q111, and HdhQ111/Q111 mice. Arrows indicate the orientation of the cilia tufts. Scale bar: 10 μm. (B) Distribution of cilia orientation around the mean (0°) in lateral ventricles from 3 each of Hdh+/+ (380 tufts analyzed), Hdh+/Q111 (465 tufts), and HdhQ111/Q111 (389 tufts) mice. (C) Ependymal trajectories of particles recorded in the lateral ventricle of 1-year-old Hdh+/+ (1,532 particles) or HdhQ111/Q111 (1,055 particles) mice. Scale bar: 50 μm. (D) Representative kymographs. (E) Quantification of the velocity of particles generated by the ependymal flow. Velocity was calculated from 5 Hdh+/+ mice and 9 HdhQ111/Q111 mice. **P < 0.01. (F) DCX immunostaining along the RMS in coronal brain sections from HdhQ111/Q111 and Hdh+/+ mouse brains. Scale bar: 100 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts