Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Dietary nitrate, nitric oxide, and restenosis
John P. Cooke, Yohannes T. Ghebremariam
John P. Cooke, Yohannes T. Ghebremariam
Published March 23, 2011
Citation Information: J Clin Invest. 2011;121(4):1258-1260. https://doi.org/10.1172/JCI57193.
View: Text | PDF
Commentary Article has an altmetric score of 3

Dietary nitrate, nitric oxide, and restenosis

  • Text
  • PDF
Abstract

Endothelium-derived NO controls the contractility and growth state of the underlying vascular smooth muscle cells and regulates the interaction of the vessel wall with circulating blood elements. Acute injury of the vessel wall denudes the endothelial lining, removing homeostatic regulation and precipitating a wave of events leading to myointimal hyperplasia. In this issue of the JCI, Alef and colleagues provide evidence that in the injured vessel wall, the disruption of the NOS pathway is countered by induction of xanthine oxidoreductase, an enzyme capable of producing NO from nitrite. In addition, they link low dietary nitrite levels to increased severity of myointimal hyperplasia following vessel injury in mice.

Authors

John P. Cooke, Yohannes T. Ghebremariam

×

Figure 1

Dietary nitrite and nitrate are absorbed in the gastrointestinal tract.

Options: View larger image (or click on image) Download as PowerPoint
Dietary nitrite and nitrate are absorbed in the gastrointestinal tract.
...
Plasma nitrate is concentrated in the salivary gland and undergoes reduction by bacteria in the mouth to nitrite. Salivary nitrate is converted in the stomach to nitrous acid, which may undergo spontaneous degradation to NO or which may nitrosylate proteins in the gut mucosa. Gastric NO is protective of the gut mucosa. Plasma nitrite may be converted by XOR in the vessel wall to produce vascular NO, which has homeostatic actions that preserve vessel patency. HNO2, nitrous acid; NO2–, nitrite; NO3–, nitrate; RSNO, S-nitrosothiol–containing peptide or protein.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 2 X users
On 2 Facebook pages
12 readers on Mendeley
See more details