Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Unraveling virus-induced lymphomagenesis
Chris Boshoff
Chris Boshoff
Published February 21, 2011
Citation Information: J Clin Invest. 2011;121(3):838-841. https://doi.org/10.1172/JCI46499.
View: Text | PDF
Commentary

Unraveling virus-induced lymphomagenesis

  • Text
  • PDF
Abstract

Kaposi sarcoma herpesvirus (KSHV), a human gammaherpesvirus, is the etiological agent for the endothelial-derived Kaposi sarcoma (KS) and also for certain lymphoproliferative disorders. In these lymphoproliferations, the KSHV-infected cells carry the stigmata of B lymphocytes, with plasmablastic features. The JCI has published three manuscripts addressing key questions related to B cell infection and viral latent expression in B cells. Myoung and Ganem provide evidence that CD4+ lymphocytes suppress KSHV replication, promoting latency in B cells; Hassman and colleagues show that KSHV infection drives plasmablast differentiation in a subset of IgM+ λ light chain–expressing cells; and Ballon and colleagues describe the in vivo transdifferentiation of B lymphocytes by KSHV-encoded viral FLICE-inhibitory protein (vFLIP).

Authors

Chris Boshoff

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 274 22
PDF 68 13
Figure 107 1
Citation downloads 43 0
Totals 492 36
Total Views 528

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts