Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Unraveling virus-induced lymphomagenesis
Chris Boshoff
Chris Boshoff
Published February 21, 2011
Citation Information: J Clin Invest. 2011;121(3):838-841. https://doi.org/10.1172/JCI46499.
View: Text | PDF
Commentary

Unraveling virus-induced lymphomagenesis

  • Text
  • PDF
Abstract

Kaposi sarcoma herpesvirus (KSHV), a human gammaherpesvirus, is the etiological agent for the endothelial-derived Kaposi sarcoma (KS) and also for certain lymphoproliferative disorders. In these lymphoproliferations, the KSHV-infected cells carry the stigmata of B lymphocytes, with plasmablastic features. The JCI has published three manuscripts addressing key questions related to B cell infection and viral latent expression in B cells. Myoung and Ganem provide evidence that CD4+ lymphocytes suppress KSHV replication, promoting latency in B cells; Hassman and colleagues show that KSHV infection drives plasmablast differentiation in a subset of IgM+ λ light chain–expressing cells; and Ballon and colleagues describe the in vivo transdifferentiation of B lymphocytes by KSHV-encoded viral FLICE-inhibitory protein (vFLIP).

Authors

Chris Boshoff

×

Figure 1

Early events after EBV and KSHV infection of tonsillar cells.

Options: View larger image (or click on image) Download as PowerPoint
Early events after EBV and KSHV infection of tonsillar cells.
(A) EBV is...
(A) EBV is amplified by permissive epithelial cells (lytic infection) and infects mucosal naive B cells. The viral default pathway in B cells is latent infection, where EBV persists as an episome (red circle). A minority of infected B cells are transformed (TrB). In infectious mononucleosis, a significant expansion of transformed lymphoblastoid cells occurs. Anti-EBV antigen CD4+ and CD8+ T cells control the proliferation of transformed cells. EBV persists in B lymphocytes, as part of the long-lived memory B cell pool (MeB). (B) Early events during KSHV infection are less established. It is uncertain whether B cells become infected after amplification of KSHV in epithelium. Data presented in this issue suggest that KSHV induces significant spontaneous lytic replication ex vivo in tonsillar-derived B cells (2). This lytic infection is suppressed when infected B cells come in contact with activated CD4+ T cells. The suppression of spontaneous viral lytic cycle entry in B cells is MHC unrestricted and not dependent on killing of target cells. New data also suggest that the primary target for KSHV in tonsillar explants could be IgM+ memory B cells (3). The majority of KSHV latent infected B cells after exposure of tonsillar explants to virus express IgMλ. KSHV induces plasmablastic differentiation of these IgMλ+ cells. An enrichment of IgMλ-expressing plasmablasts also occurs in inducible vFLIP knockin mice, targeting vFLIP to different stages of B cell proliferation (4). Such IgMλ+ infected plasmablasts are thought to cause KSHV-related MCD. Lytic infected cells are indicated by disrupted nuclear membranes.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts