Lipid droplets (LDs) are intracellular organelles that store neutral lipids within cells. Over the last two decades there has been a dramatic growth in our understanding of LD biology and, in parallel, our understanding of the role of LDs in health and disease. In its simplest form, the LD regulates the storage and hydrolysis of neutral lipids, including triacylglycerol and/or cholesterol esters. It is becoming increasingly evident that alterations in the regulation of LD physiology and metabolism influence the risk of developing metabolic diseases such as diabetes. In this review we provide an update on the role of LD-associated proteins and LDs in metabolic disease.
Andrew S. Greenberg, Rosalind A. Coleman, Fredric B. Kraemer, James L. McManaman, Martin S. Obin, Vishwajeet Puri, Qing-Wu Yan, Hideaki Miyoshi, Douglas G. Mashek
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 2,014 | 435 |
151 | 80 | |
Figure | 158 | 3 |
Citation downloads | 74 | 0 |
Totals | 2,397 | 518 |
Total Views | 2,915 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.