Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Navigational error in the heart leads to premature ventricular excitation
Hiroshi Akazawa, Issei Komuro
Hiroshi Akazawa, Issei Komuro
Published January 25, 2011
Citation Information: J Clin Invest. 2011;121(2):513-516. https://doi.org/10.1172/JCI46038.
View: Text | PDF
Commentary

Navigational error in the heart leads to premature ventricular excitation

  • Text
  • PDF
Abstract

In the normal heart, an insulating barrier separates the atria and ventricles. The only way in which electrical impulses can cross this barrier is via the atrioventricular (AV) node, which delays impulse conduction to ensure the forward flow of the blood. However, in some individuals, additional muscular bundles (accessory pathways) allow rapid conduction of electrical impulses from the atria to the ventricles, resulting in premature ventricular excitation and contraction. In this issue of the JCI, two independent research groups demonstrate that erroneous development of the embryonic AV canal, which performs a similar function to that of the adult AV node, is a novel mechanism by which accessory pathways can form.

Authors

Hiroshi Akazawa, Issei Komuro

×

Figure 1

Cardiac conduction in normal, Notch-inhibited, Notch1-activated, and Tbx2-deficient mice.

Options: View larger image (or click on image) Download as PowerPoint
Cardiac conduction in normal, Notch-inhibited, Notch1-activated, and Tbx...
(A) In normal hearts, the electric impulses initiated by pacemaker cells in the sinoatrial (SA) node propagate through the atrial myocardium and trigger its contraction. At the AV node, the impulses are delayed for a period to facilitate alternating contraction of the atrial and ventricular myocardium. After the AV delay, the electrical impulses rapidly travel to the ventricular myocardium via the His-Purkinje system and stimulate the ventricular myocardium. (B) In Notch-inhibited hearts, the AV node is hypoplastic, and the PR interval on the ECG is shortened due to disruption of the AV nodal delay. (C) In Notch1-activated and (D) Tbx2-deficient hearts, accessory pathways are formed as a result of malformation of the AV canal myocardium. The accessory pathways are commonly right-sided in Notch1-activated mice and left-sided in Tbx2-deficient mice. Because of faster conduction through the accessory pathways than through the AV node, the ventricular myocardium is prematurely stimulated (preexcitation). The ECG shows a short PR interval, a slurred upstroke (“delta wave”) of the QRS complex, and a widened QRS complex.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts