Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections
Ming Zeng, Anthony J. Smith, Stephen W. Wietgrefe, Peter J. Southern, Timothy W. Schacker, Cavan S. Reilly, Jacob D. Estes, Gregory F. Burton, Guido Silvestri, Jeffrey D. Lifson, John V. Carlis, Ashley T. Haase
Ming Zeng, Anthony J. Smith, Stephen W. Wietgrefe, Peter J. Southern, Timothy W. Schacker, Cavan S. Reilly, Jacob D. Estes, Gregory F. Burton, Guido Silvestri, Jeffrey D. Lifson, John V. Carlis, Ashley T. Haase
View: Text | PDF
Research Article Virology

Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections

  • Text
  • PDF
Abstract

The hallmark of HIV-1 and SIV infections is CD4+ T cell depletion. Both direct cell killing and indirect mechanisms related to immune activation have been suggested to cause the depletion of T cells. We have now identified a mechanism by which immune activation-induced fibrosis of lymphoid tissues leads to depletion of naive T cells in HIV-1 infected patients and SIV-infected rhesus macaques. The T regulatory cell response to immune activation increased procollagen production and subsequent deposition as fibrils via the TGF-β1 signaling pathway and chitinase 3-like-1 activity in fibroblasts in lymphoid tissues from patients infected with HIV-1. Collagen deposition restricted T cell access to the survival factor IL-7 on the fibroblastic reticular cell (FRC) network, resulting in apoptosis and depletion of T cells, which, in turn, removed a major source of lymphotoxin-β, a survival factor for FRCs during SIV infection in rhesus macaques. The resulting loss of FRCs and the loss of IL-7 produced by FRCs may thus perpetuate a vicious cycle of depletion of T cells and the FRC network. Because this process is cumulative, early treatment and antifibrotic therapies may offer approaches to moderate T cell depletion and improve immune reconstitution during HIV-1 infection.

Authors

Ming Zeng, Anthony J. Smith, Stephen W. Wietgrefe, Peter J. Southern, Timothy W. Schacker, Cavan S. Reilly, Jacob D. Estes, Gregory F. Burton, Guido Silvestri, Jeffrey D. Lifson, John V. Carlis, Ashley T. Haase

×

Figure 9

CHI3L1 facilitates type I collagen formation.

Options: View larger image (or click on image) Download as PowerPoint
CHI3L1 facilitates type I collagen formation.
(A) CHI3L1 expression was ...
(A) CHI3L1 expression was significantly correlated with collagen type I deposition in the inguinal LN. Each individual colored symbol represents an individual subject. (B) The extracellular collagen type I networks of primary human fibroblasts were quantified for fibroblasts, treated with or without CHI3L1 (500 ng/ml) for 48 hours. Addition of the antifibrotic drug pirfenidone (0.5 mg/ml) or a CHI3L1-blocking antibody decreased collagen type I production. The extracellular collagen type I networks were quantified for each condition and are reported as collagen type I mean fluorescence intensity. Data are expressed as mean ± SD, where 3 independent experiments were performed in quadruplicate. The results are shown with significance where applicable (P < 0.05).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts