Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells
Isabelle C. Arnold, … , Christian Taube, Anne Müller
Isabelle C. Arnold, … , Christian Taube, Anne Müller
Published July 1, 2011
Citation Information: J Clin Invest. 2011;121(8):3088-3093. https://doi.org/10.1172/JCI45041.
View: Text | PDF
Brief Report Article has an altmetric score of 74

Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells

  • Text
  • PDF
Abstract

Atopic asthma is a chronic disease of the airways that has taken on epidemic proportions in the industrialized world. The increase in asthma rates has been linked epidemiologically to the rapid disappearance of Helicobacter pylori, a bacterial pathogen that persistently colonizes the human stomach, from Western societies. In this study, we have utilized mouse models of allergic airway disease induced by ovalbumin or house dust mite allergen to experimentally examine a possible inverse correlation between H. pylori and asthma. H. pylori infection efficiently protected mice from airway hyperresponsiveness, tissue inflammation, and goblet cell metaplasia, which are hallmarks of asthma, and prevented allergen-induced pulmonary and bronchoalveolar infiltration with eosinophils, Th2 cells, and Th17 cells. Protection against asthma was most robust in mice infected neonatally and was abrogated by antibiotic eradication of H. pylori. Asthma protection was further associated with impaired maturation of lung-infiltrating dendritic cells and the accumulation of highly suppressive Tregs in the lungs. Systemic Treg depletion abolished asthma protection; conversely, the adoptive transfer of purified Treg populations was sufficient to transfer protection from infected donor mice to uninfected recipients. Our results thus provide experimental evidence for a beneficial effect of H. pylori colonization on the development of allergen-induced asthma.

Authors

Isabelle C. Arnold, Nina Dehzad, Sebastian Reuter, Helen Martin, Burkhard Becher, Christian Taube, Anne Müller

×

Figure 3

Asthma protection is conferred by Tregs.

Options: View larger image (or click on image) Download as PowerPoint
Asthma protection is conferred by Tregs.
Groups of mice were sensitized ...
Groups of mice were sensitized with OVA or PBS only prior to intravenously receiving unsorted (total [tot]) MLN/PP populations isolated from uninfected or neonatally infected and/or OVA-sensitized or Treg-depleted (–FoxP3+) donors. Tregs were depleted in foxP3-EGFP-DTR–transgenic donors by a single dose of diphtheria toxin 1 day prior to cell isolation; Treg-proficient donors were nontransgenic littermates. Additional recipients received 2.5 × 105 immunomagnetically isolated, MLN/PP-derived CD4+CD25+ Tregs or CD4+CD25– T cells (>85% purity each) from neonatally infected donors. All recipients as well as control groups were nebulized with OVA on days 2, 3, and 4 after adoptive transfer and sacrificed 2 days later. (A) Airway hyperresponsiveness in response to increasing doses of inhaled methacholine and the highest dose of 100 mg/ml, respectively. (B and C) Total cells and eosinophils contained in 1 ml of BALF. (D and E) Tissue inflammation and goblet cell metaplasia as assessed on H&E- and PAS-stained tissue sections. Micrographs of representative T cell recipients and controls are shown in D; inflammation and PAS scores are shown in E for all mice. Original magnification: ×100 (H&E); ×400 (PAS). All group data of methacholine measurements are presented as mean ± SEM. Total cell and eosinophil counts in BALF are presented for individual mice, with horizontal bars indicating group medians. Inflammation scores and PAS+ cells are represented by box and whisker plots, with horizontal bars representing medians and whisker ends indicating minimal and maximal values. Cytokine measurements and PCR results are presented as group mean ± SD.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 4 news outlets
Blogged by 5
Posted by 6 X users
Referenced in 4 patents
On 2 Facebook pages
Pinned by 1 on Pinterest
Highlighted by 1 platforms
313 readers on Mendeley
See more details