Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Soluble TNFRp75 regulates host protective immunity against Mycobacterium tuberculosis
Roanne Keeton, … , Bernhard Ryffel, Muazzam Jacobs
Roanne Keeton, … , Bernhard Ryffel, Muazzam Jacobs
Published February 24, 2014
Citation Information: J Clin Invest. 2014;124(4):1537-1551. https://doi.org/10.1172/JCI45005.
View: Text | PDF
Research Article Microbiology

Soluble TNFRp75 regulates host protective immunity against Mycobacterium tuberculosis

  • Text
  • PDF
Abstract

Development of host protective immunity against Mycobacterium tuberculosis infection is critically dependent on the inflammatory cytokine TNF. TNF signals through 2 receptors, TNFRp55 and TNFRp75; however, the role of TNFRp75-dependent signaling in immune regulation is poorly defined. Here we found that mice lacking TNFRp75 exhibit greater control of M. tuberculosis infection compared with WT mice. TNFRp75–/– mice developed effective bactericidal granulomas and demonstrated increased pulmonary recruitment of activated DCs. Moreover, IL-12p40–dependent migration of DCs to lung draining LNs of infected TNFRp75–/– mice was substantially higher than that observed in WT M. tuberculosis–infected animals and was associated with enhanced frequencies of activated M. tuberculosis–specific IFN-γ–expressing CD4+ T cells. In WT mice, TNFRp75 shedding correlated with markedly reduced bioactive TNF levels and IL-12p40 expression. Neutralization of TNFRp75 in M. tuberculosis–infected WT BM-derived DCs (BMDCs) increased production of bioactive TNF and IL-12p40 to a level equivalent to that produced by TNFRp75–/– BMDCs. Addition of exogenous TNFRp75 to TNFRp75–/– BMDCs infected with M. tuberculosis decreased IL-12p40 synthesis, demonstrating that TNFRp75 shedding regulates DC activation. These data indicate that TNFRp75 shedding downmodulates protective immune function and reduces host resistance and survival; therefore, targeting TNFRp75 may be beneficial for improving disease outcome.

Authors

Roanne Keeton, Nasiema Allie, Ivy Dambuza, Brian Abel, Nai-Jen Hsu, Boipelo Sebesho, Philippa Randall, Patricia Burger, Elizabeth Fick, Valerie F.J. Quesniaux, Bernhard Ryffel, Muazzam Jacobs

×

Figure 6

M. tuberculosis induces TNFR shedding.

Options: View larger image (or click on image) Download as PowerPoint

M. tuberculosis induces TNFR shedding.
 
(A and B) WT and TNFRp75–/– BM...
(A and B) WT and TNFRp75–/– BMDCs were infected with M. tuberculosis at an MOI of 5:1, and TNFRp75 surface expression (A) and soluble TNFRp55 (B) were measured. Data (mean ± SEM of quadruplicate experiments) are representative of 1 of 2 experiments. (C–E) WT, TNFRp75–/–, and TNFRp55–/– mice were infected with 50–100 CFU M. tuberculosis. Surface TNFRp75 (C) was measured by flow cytometry in BAL cells, and soluble TNFRp55 (D) and TNFRp75 (E) were measured in lung homogenates by ELISA. ND, not detectable. Data (mean ± SEM of 4–5 mice per group) are representative of 1 of 2 similar experiments. *P < 0.05, **P < 0.01, ANOVA.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts