Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

A Tbx1-Six1/Eya1-Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis
Chaoshe Guo, … , Anne Moon, Xue Li
Chaoshe Guo, … , Anne Moon, Xue Li
Published March 1, 2011
Citation Information: J Clin Invest. 2011;121(4):1585-1595. https://doi.org/10.1172/JCI44630.
View: Text | PDF | Erratum
Research Article Cardiology

A Tbx1-Six1/Eya1-Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis

  • Text
  • PDF
Abstract

Shared molecular programs govern the formation of heart and head during mammalian embryogenesis. Development of both structures is disrupted in human chromosomal microdeletion of 22q11.2 (del22q11), which causes DiGeorge syndrome (DGS) and velo-cardio-facial syndrome (VCFS). Here, we have identified a genetic pathway involving the Six1/Eya1 transcription complex that regulates cardiovascular and craniofacial development. We demonstrate that murine mutation of both Six1 and Eya1 recapitulated most features of human del22q11 syndromes, including craniofacial, cardiac outflow tract, and aortic arch malformations. The mutant phenotypes were attributable in part to a reduction of fibroblast growth factor 8 (Fgf8), which was shown to be a direct downstream effector of Six1 and Eya1. Furthermore, we showed that Six1 and Eya1 genetically interacted with Fgf8 and the critical del22q11 gene T-box transcription factor 1 (Tbx1) in mice. Together, these findings reveal a Tbx1-Six1/Eya1-Fgf8 genetic pathway that is crucial for mammalian cardiocraniofacial morphogenesis and provide insights into the pathogenesis of human del22q11 syndromes.

Authors

Chaoshe Guo, Ye Sun, Bin Zhou, Rosalyn M. Adam, XiaoKun Li, William T. Pu, Bernice E. Morrow, Anne Moon, Xue Li

×

Total citations by year

Year: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2009 Total
Citations: 3 6 4 7 6 3 6 1 7 1 4 13 8 9 3 1 82
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article in year 2017 (7)

Title and authors Publication Year
Temporally Distinct Six2 -Positive Second Heart Field Progenitors Regulate Mammalian Heart Development and Disease
Z Zhou, J Wang, C Guo, W Chang, J Zhuang, P Zhu, X Li
Cell Reports 2017
The Complex Genetic Basis of Congenital Heart Defects
E Akhirome, NA Walton, JM Nogee, PY Jay
Circulation journal : official journal of the Japanese Circulation Society 2017
In Silico Analyses Reveal the Relationship Between SIX1/EYA1 Mutations and Conotruncal Heart Defects
B Li, L Xu, N Hong, S Chen, R Xu
Pediatric Cardiology 2017
Negative regulation of endothelin signaling by SIX1 is required for proper maxillary development
AL Tavares, TC Cox, RM Maxson, HL Ford, DE Clouthier
Development (Cambridge, England) 2017
Stage- and subunit-specific functions of polycomb repressive complex 2 in bladder urothelial formation and regeneration
C Guo, ZR Balsara, WG Hill, X Li
Development (Cambridge, England) 2017
Copy number variants in Ebstein anomaly
A Giannakou, RJ Sicko, W Zhang, P Romitti, ML Browne, M Caggana, LC Brody, L Jelliffe-Pawlowski, GM Shaw, DM Kay, JL Mills, D Fraidenraich
PloS one 2017
Integrated rare variant-based risk gene prioritization in disease case-control sequencing studies
JR Lin, Q Zhang, Y Cai, BE Morrow, ZD Zhang, X Zhu
PLoS genetics 2017

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts