Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
PIK3CA and KRAS mutations predict for response to everolimus therapy: now that’s RAD001
Morassa Mohseni, Ben Ho Park
Morassa Mohseni, Ben Ho Park
Published July 26, 2010
Citation Information: J Clin Invest. 2010;120(8):2655-2658. https://doi.org/10.1172/JCI44026.
View: Text | PDF
Commentary Article has an altmetric score of 3

PIK3CA and KRAS mutations predict for response to everolimus therapy: now that’s RAD001

  • Text
  • PDF
Abstract

Targeted cancer therapeutics can be effective when patients are preselected to maximize the chance of response. Increasingly, molecular markers such as oncogenic DNA mutations are being exploited to help guide patient preselection. These DNA lesions can predict for either a positive or negative response to a given drug. Finding such predictive biomarkers is an ongoing challenge. New work by Di Nicolantonio and colleagues in this issue of the JCI demonstrates that PI3K catalytic α subunit (PIK3CA) mutations can sensitize cancer cells to the mammalian target of rapamycin (mTOR) inhibitor everolimus. In addition, they show that the concurrent presence of PIK3CA mutations and mutations in either KRAS or BRAF predict for resistance to this drug. These data suggest that mTOR inhibitors currently in use will be ineffective against cancers that have a mutation in either KRAS or BRAF despite having PI3K/AKT/mTOR pathway activation.

Authors

Morassa Mohseni, Ben Ho Park

×

Figure 1

The PI3K/AKT/mTOR pathway.

Options: View larger image (or click on image) Download as PowerPoint
The PI3K/AKT/mTOR pathway.
Receptor tyrosine kinases bind with ligand an...
Receptor tyrosine kinases bind with ligand and initiate the signaling pathway via intermediate molecules (IRS). PI3K becomes activated, which results in phosphorylation of phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-trisphosphate (PIP3), a process that is reversed by PTEN. At the cell membrane, proteins with pleckstrin homology domains then become phosphorylated via PIP3 (phosphoinositide-dependent protein kinase–1 [PDK1] and AKT). PDK1 can also phosphorylate critical residues on AKT. The tumor suppressor complex of TSC1/TSC2 normally inhibits mTOR activation via Ras homolog enriched in brain (Rheb). Activated AKT prevents this inhibition, leading to activation of the mTOR/Raptor complex known as mTOR complex 1 (mTORC1). This complex can be inhibited by rapamycin and its analogs, including everolimus. Ultimately, mTORC1 leads to the activation of downstream proteins involved in the initiation of protein synthesis, resulting in cellular growth. Receptor tyrosine kinase activation also initiates MAPK pathway signaling, which leads to cell cycle progression and proliferation. MAPK pathway activation can also augment PI3K signaling. MEK, MAPK/ERK kinase.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
64 readers on Mendeley
See more details