Muscular dystrophies (MDs) comprise a group of degenerative muscle disorders characterized by progressive muscle wasting and often premature death. The primary defect common to most MDs involves disruption of the dystrophin-glycoprotein complex (DGC). This leads to sarcolemmal instability and Ca2+ influx, inducing cellular necrosis. Here we have shown that the dystrophic phenotype observed in δ-sarcoglycan–null (Sgcd–/–) mice and dystrophin mutant mdx mice is dramatically improved by skeletal muscle–specific overexpression of sarcoplasmic reticulum Ca2+ ATPase 1 (SERCA1). Rates of myofiber central nucleation, tissue fibrosis, and serum creatine kinase levels were dramatically reduced in Sgcd–/– and mdx mice with the SERCA1 transgene, which also rescued the loss of exercise capacity in Sgcd–/– mice. Adeno-associated virus–SERCA2a (AAV-SERCA2a) gene therapy in the gastrocnemius muscle of Sgcd–/– mice mitigated dystrophic disease. SERCA1 overexpression reversed a defect in sarcoplasmic reticulum Ca2+ reuptake that characterizes dystrophic myofibers and reduced total cytosolic Ca2+. Further, SERCA1 overexpression almost completely rescued the dystrophic phenotype in a mouse model of MD driven solely by Ca2+ influx. Mitochondria isolated from the muscle of SERCA1-Sgcd–/– mice were no longer swollen and calpain activation was reduced, suggesting protection from Ca2+-driven necrosis. Our results suggest a novel therapeutic approach using SERCA1 to abrogate the altered intracellular Ca2+ levels that underlie most forms of MD.
Sanjeewa A. Goonasekera, Chi K. Lam, Douglas P. Millay, Michelle A. Sargent, Roger J. Hajjar, Evangelia G. Kranias, Jeffery D. Molkentin
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 605 | 111 |
191 | 65 | |
Figure | 423 | 6 |
Supplemental data | 41 | 0 |
Citation downloads | 55 | 0 |
Totals | 1,315 | 182 |
Total Views | 1,497 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.