Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Thymus-specific serine protease controls autoreactive CD4 T cell development and autoimmune diabetes in mice
Christophe Viret, … , Alice Carrier, Sylvie Guerder
Christophe Viret, … , Alice Carrier, Sylvie Guerder
Published April 18, 2011
Citation Information: J Clin Invest. 2011;121(5):1810-1821. https://doi.org/10.1172/JCI43314.
View: Text | PDF
Research Article Metabolism

Thymus-specific serine protease controls autoreactive CD4 T cell development and autoimmune diabetes in mice

  • Text
  • PDF
Abstract

Type 1 diabetes is a chronic autoimmune disease in which genetic predispositions affect the immune system, leading to a loss of T cell tolerance to β cells and consequent T cell–mediated destruction of insulin-producing islet cells. Genetic studies have suggested that PRSS16 is linked to a diabetes susceptibility locus of the extended HLA class I region in humans. PRSS16 encodes what we believe to be a novel protease, thymus-specific serine protease (TSSP), which shows predominant expression in thymic epithelial cells and is suspected to have a restricted role in the class II presentation pathway. Consistently, Tssp is necessary for the intrathymic selection of few class II–restricted T cell receptor specificities in B6 mice. To directly assess the role of Tssp in autoimmune diabetes, we generated Tssp-deficient (Tssp°) NOD mice. While remaining immunocompetent, Tssp° NOD mice were protected from diabetes and severe insulitis. Diabetes resistance of Tssp° NOD mice was a property of the CD4 T cell compartment that is acquired during thymic selection and correlated with an impaired selection of CD4 T cells specific for islet antigens. Hence, in the NOD mouse, Tssp is a critical regulator of diabetes development through the selection of the autoreactive CD4 T cell repertoire.

Authors

Christophe Viret, Stéphane Leung-Theung-Long, Laurent Serre, Camille Lamare, Dario A.A. Vignali, Bernard Malissen, Alice Carrier, Sylvie Guerder

×

Full Text PDF

Download PDF (1.16 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts