Mendelian heritable pain disorders have provided insights into human pain mechanisms and suggested new analgesic drug targets. Interestingly, many of the heritable monogenic pain disorders have been mapped to mutations in genes encoding ion channels. Studies in transgenic mice have also implicated many ion channels in damage sensing and pain modulation. It seems likely that aberrant peripheral or central ion channel activity underlies or initiates many pathological pain conditions. Understanding the mechanistic basis of ion channel malfunction in terms of trafficking, localization, biophysics, and consequences for neurotransmission is a potential route to new pain therapies.
Ramin Raouf, Kathryn Quick, John N. Wood
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 1,558 | 247 |
143 | 44 | |
Figure | 348 | 3 |
Table | 69 | 0 |
Citation downloads | 70 | 0 |
Totals | 2,188 | 294 |
Total Views | 2,482 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.