Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
CD13 is a therapeutic target in human liver cancer stem cells
Naotsugu Haraguchi, … , Yuichiro Doki, Masaki Mori
Naotsugu Haraguchi, … , Yuichiro Doki, Masaki Mori
Published August 9, 2010
Citation Information: J Clin Invest. 2010;120(9):3326-3339. https://doi.org/10.1172/JCI42550.
View: Text | PDF
Research Article Oncology Article has an altmetric score of 13

CD13 is a therapeutic target in human liver cancer stem cells

  • Text
  • PDF
Abstract

Cancer stem cells (CSCs) are generally dormant or slowly cycling tumor cells that have the ability to reconstitute tumors. They are thought to be involved in tumor resistance to chemo/radiation therapy and tumor relapse and progression. However, neither their existence nor their identity within many cancers has been well defined. Here, we have demonstrated that CD13 is a marker for semiquiescent CSCs in human liver cancer cell lines and clinical samples and that targeting these cells might provide a way to treat this disease. CD13+ cells predominated in the G0 phase of the cell cycle and typically formed cellular clusters in cancer foci. Following treatment, these cells survived and were enriched along the fibrous capsule where liver cancers usually relapse. Mechanistically, CD13 reduced ROS-induced DNA damage after genotoxic chemo/radiation stress and protected cells from apoptosis. In mouse xenograft models, combination of a CD13 inhibitor and the genotoxic chemotherapeutic fluorouracil (5-FU) drastically reduced tumor volume compared with either agent alone. 5-FU inhibited CD90+ proliferating CSCs, some of which produce CD13+ semiquiescent CSCs, while CD13 inhibition suppressed the self-renewing and tumor-initiating ability of dormant CSCs. Therefore, combining a CD13 inhibitor with a ROS-inducing chemo/radiation therapy may improve the treatment of liver cancer.

Authors

Naotsugu Haraguchi, Hideshi Ishii, Koshi Mimori, Fumiaki Tanaka, Masahisa Ohkuma, Ho Min Kim, Hirofumi Akita, Daisuke Takiuchi, Hisanori Hatano, Hiroaki Nagano, Graham F. Barnard, Yuichiro Doki, Masaki Mori

×

Figure 6

CD13 inhibition elicits cancer regression in vivo.

Options: View larger image (or click on image) Download as PowerPoint
CD13 inhibition elicits cancer regression in vivo.
(A) HuH7-xenografted ...
(A) HuH7-xenografted mice were treated with 5-FU or ubenimex for 3 days. The sections were stained with anti-human CD13 (red), Ki-67 (green), and DAPI (blue). Each right-hand panel shows a high magnification (×20, control and 5-FU; ×40, Ube) of the white dot square on the left (×10, control and 5-FU; ×20, Ube). White arrows: cellular clusters express CD13 but not Ki-67 (upper panels), residual Ki-67+ cancer cells (middle panels), and a residual CD13+ cell (lower panels). (B) PLC/PRF/5-xenografted mice were treated with 5-FU, ubenimex, and ubenimex plus 5-FU for 14 days. The black arrows indicate a small amount of residual cancer. The sections were stained with H&E (×10), anti-human CD13 (red), anti-human CD90 (green), and DAPI (blue) (×20, control, 5-FU, and Ube; ×40, Ube + 5-FU). Nonspecific and fragmented expression of CD13 (white arrow). In situ hybridization for DNA fragmentation (low and high magnification). Black dot-like structures indicate labeled DNA. (C) Tumors of control and ubenimex–plus–5-FU–treated mice. Black arrowheads indicate the tumor margin. (D) The relative tumor volumes (after treatment [mm3]/before treatment [mm3] × 100%) of the control, 5-FU, ubenimex, and ubenimex–plus–5-FU–treated mice. Data represent mean ± SD from independent experiments. *NS; **P < 0.01. (E) The CD13+ cell–enriched fractions obtained from 5-FU–treated mice were serially transplanted into secondary NOD/SCID mice. The mice were treated with ubenimex (Ube; n = 6) or received no treatment (control; n = 10) from the day after transplantation for 7 days. Tumor growth was observed for 3 weeks.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 1 X users
Referenced in 9 patents
200 readers on Mendeley
See more details