Biofilms are surface-attached agglomerations of microorganisms embedded in an extracellular matrix. Biofilm-associated infections are difficult to eradicate and represent a significant reservoir for disseminating and recurring serious infections. Infections involving biofilms frequently develop on indwelling medical devices in hospitalized patients, and Staphylococcus epidermidis is the leading cause of infection in this setting. However, the molecular determinants of biofilm dissemination are unknown. Here we have demonstrated that specific secreted, surfactant-like S. epidermidis peptides — the β subclass of phenol-soluble modulins (PSMs) — promote S. epidermidis biofilm structuring and detachment in vitro and dissemination from colonized catheters in a mouse model of device-related infection. Our study establishes in vivo significance of biofilm detachment mechanisms for the systemic spread of biofilm-associated infection and identifies the effectors of biofilm maturation and detachment in a premier biofilm-forming pathogen. Furthermore, by demonstrating that antibodies against PSMβ peptides inhibited bacterial spread from indwelling medical devices, we have provided proof of principle that interfering with biofilm detachment mechanisms may prevent dissemination of biofilm-associated infection.
Rong Wang, Burhan A. Khan, Gordon Y. C. Cheung, Thanh-Huy L. Bach, Max Jameson-Lee, Kok-Fai Kong, Shu Y. Queck, Michael Otto
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 723 | 131 |
257 | 46 | |
Figure | 512 | 15 |
Table | 111 | 0 |
Supplemental data | 42 | 2 |
Citation downloads | 73 | 0 |
Totals | 1,718 | 194 |
Total Views | 1,912 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.