Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A critical role for transforming growth factor-beta in donor transfusion-induced allograft tolerance.
R Josien, … , J P Soulillou, M C Cuturi
R Josien, … , J P Soulillou, M C Cuturi
Published December 1, 1998
Citation Information: J Clin Invest. 1998;102(11):1920-1926. https://doi.org/10.1172/JCI4221.
View: Text | PDF
Research Article

A critical role for transforming growth factor-beta in donor transfusion-induced allograft tolerance.

  • Text
  • PDF
Abstract

Donor-specific (DST) or nonspecific blood transfusions administered before transplantation can enhance survival of vascularized allografts both in humans and animals but the immunological mechanisms of this effect remain unclear. We have analyzed the expression and the role of endogenous TGF-beta1 in a model of heart allograft tolerance, induced by pregraft DST in adult rats. We reported previously that this tolerance occurs despite a strong infiltration of leukocytes into the graft that are unable to produce both Th1- and Th2-related cytokines in vivo. Allografts from DST-treated rats express high levels of TGF-beta1 mRNA and active protein. This phenomenon is correlated with the rapid infiltration of leukocytes producing high amounts of TGF-beta1. TGF-beta1-producing cells are virtually absent among early infiltrating cells in rejected grafts but are found at a later time point. The induction of allograft tolerance in vivo is abrogated by administration of neutralizing anti-TGF-beta mAb. Moreover, overexpression of active TGF- beta1 in heart allografts using a recombinant adenovirus leads to prolonged graft survival in unmodified recipients. Taken together, our results identify TGF-beta as a critical cytokine involved in the suppression of allograft rejection induced by DST and suggest that TGF-beta-producing regulatory cells are also involved in allograft tolerance.

Authors

R Josien, P Douillard, C Guillot, M Müschen, I Anegon, J Chetritt, S Menoret, C Vignes, J P Soulillou, M C Cuturi

×

Full Text PDF

Download PDF (303.85 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts